Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Art and ITER | Two sisters, two suns and a monument to fusion

    Amid the gentle slopes of Asciano, Italy, there stands a stone window that frames the Sun on the summer solstice. It looks as though it might have always been t [...]

    Read more

  • Staff | The men and women of ITER

    They hail from Ahmedabad and Prague ... from Naka and Moscow ... from Seoul, Hefei, Atlanta and hundreds of other towns and cities across the 35 nations partici [...]

    Read more

  • ITER Talks | All about ITER and fusion

    Beginning this autumn, the ITER Organization will be launching a new video series to inform, inspire and educate. The first video—introducing the series and off [...]

    Read more

  • Image of the week | A majestic components enters the stage

    The floor of the Assembly Hall is an ever-changing stage. Like characters in a grand production, components of all size and shapes make a spectacular entry, pl [...]

    Read more

  • Magnet system | A set of spares for the long journey

    In about five years, ITER will embark on a long journey through largely uncharted territory. Conditions will be harsh and—despite all the calculations, modellin [...]

    Read more

Of Interest

See archived entries

Colour me a plasma

Each element has its own colour, corresponding to the gaps between its electrons' energy levels. The human classification of today's plasma colour as salmon, or peach, or burnt sienna is quite irrelevant. But a fun discussion to have, nonetheless. (Click to view larger version...)
Each element has its own colour, corresponding to the gaps between its electrons' energy levels. The human classification of today's plasma colour as salmon, or peach, or burnt sienna is quite irrelevant. But a fun discussion to have, nonetheless.
Something that surprises many people when they see their first plasma pulse on a screen in the control room, is that the plasma is invisible. There is a bit of glow around the edges, and the divertor—the bottom area of the vessel where the plasma touches the tiles—glows red hot. But the core of the plasma, at something like 100 million degrees, is completely transparent.

This is a desirable characteristic — it means that there is no energy being lost via radiation. It comes about because the atoms of the hydrogen fuel have been completely stripped of their electrons, or ionised. When attached to a nucleus at lower temperatures, these electrons absorb and emit light as they jump between the energy levels, but once they are detached that mechanism is disabled, so no light is absorbed or emitted.

To become this transparent, of course all the electrons must be detached. There is a pink glow around the edges because the plasma is cooler and so some electrons are attached, but generally for deuterium and tritium atoms, their single electron is easily removed. But for all other elements, with more electrons, it is harder to remove every last one and therefore to completely prevent energy leaking out through in the form of radiation.

Read the full article at EFDA.


return to the latest published articles