Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Toroidal field coils | Finishing touches on site

    Between the time a toroidal field coil is delivered to ITER and the moment it is ready to enter the pre-assembly process, certain tasks must be performed: the w [...]

    Read more

  • Cryostat base insertion | "A moment that will live in our memories"

    In the closing scene of the 1977 movie Close Encounters of the Third Kind, an alien spaceship hovers above an anxious and awestruck crowd of scientists and engi [...]

    Read more

  • Cryogenics | As dry as He can get

    Before it gets processed in the cold boxes of the ITER cryoplant, gaseous helium need to be perfectly dry—and this means removing every single water molecule th [...]

    Read more

  • Electron cyclotron transmission lines | Design phase ends

    US ITER is ready to start manufacturing high-power microwave transmission lines for the electron cyclotron resonance heating system. After several years of d [...]

    Read more

  • Gyrotrons | Russia completes four

    Gyrotrons (from the Greek 'gyro' (circle) and 'tron' (abstracted from electron) are the energy-generating devices of the electron cyclotron resonance heating sy [...]

    Read more

Of Interest

See archived entries

12 minutes to understand TF coil manufacturing

Each toroidal field coil is made up of a winding pack (seven double pancakes plus radial plate) and a protective shell of stainless steel. At the La Spezia winding line, 750-metre lengths of toroidal field conductor will be bent into a D-shaped double spiral trajectory, and their length controlled to an accuracy of 500th of a millimetre per metre. (Click to view larger version...)
Each toroidal field coil is made up of a winding pack (seven double pancakes plus radial plate) and a protective shell of stainless steel. At the La Spezia winding line, 750-metre lengths of toroidal field conductor will be bent into a D-shaped double spiral trajectory, and their length controlled to an accuracy of 500th of a millimetre per metre.
The magnets responsible for confining the ITER plasma—the eighteen D-shaped toroidal field coils—will form an impressive superstructure within the ITER machine: at approximately 6,000 tonnes (coils plus cases), they will represent over one-fourth of the Tokamak's total weight.

In two new videos produced by the European Domestic Agency, we are taken inside a vast manufacturing facility in La Spezia, Italy, where preparations are under way for the fabrication of ten toroidal field coils (nine plus one spare) that are part of the European contribution to ITER.

From winding through heat treatment and on to insertion into radial plates, the toroidal field coil manufacturing process is complex and exacting, requiring unprecedented levels of tolerances and performance. In the videos, experts from the ASG consortium* and Europe speak of the technical challenges, the specialized tooling, and the qualification work underway.

You can see the two 6-minute videos on F4E's website.

*ASG consortium: Iberdrola Ingeniería y Construcción SAU, ASG Superconductors SpA and Elytt Energy SL



return to the latest published articles