Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Neutral beam injection | How ELISE is contributing to ITER

    ITER's neutral beam injection system is based on a radio frequency source that has been the subject of decades of development in Europe. At Max Planck Institute [...]

    Read more

  • Image of the week | Almost there

    The Tokamak Building has reached its maximum height ... in terms of concrete that is. The 'jewel box' in reinforced concrete will grow no more; instead, it will [...]

    Read more

  • Powerful lasers | A mockup to demonstrate safety

    During ITER operation, high-powered lasers will gather important diagnostic information on the properties and behaviour of the plasma, such as density, temperat [...]

    Read more

  • Cryostat | Lower cylinder revealed

    They were all there: those who designed it, those who forged it, those who assembled and welded it, and those who closely monitored the requirements and procedu [...]

    Read more

  • Europe's DEMO | What it could be like

    It looks like ITER, feels like ITER, but it's not ITER. In this depiction of what the site layout for the next-step fusion machine, DEMO, might look like in Eur [...]

    Read more

Of Interest

See archived entries

12 minutes to understand TF coil manufacturing

Each toroidal field coil is made up of a winding pack (seven double pancakes plus radial plate) and a protective shell of stainless steel. At the La Spezia winding line, 750-metre lengths of toroidal field conductor will be bent into a D-shaped double spiral trajectory, and their length controlled to an accuracy of 500th of a millimetre per metre. (Click to view larger version...)
Each toroidal field coil is made up of a winding pack (seven double pancakes plus radial plate) and a protective shell of stainless steel. At the La Spezia winding line, 750-metre lengths of toroidal field conductor will be bent into a D-shaped double spiral trajectory, and their length controlled to an accuracy of 500th of a millimetre per metre.
The magnets responsible for confining the ITER plasma—the eighteen D-shaped toroidal field coils—will form an impressive superstructure within the ITER machine: at approximately 6,000 tonnes (coils plus cases), they will represent over one-fourth of the Tokamak's total weight.

In two new videos produced by the European Domestic Agency, we are taken inside a vast manufacturing facility in La Spezia, Italy, where preparations are under way for the fabrication of ten toroidal field coils (nine plus one spare) that are part of the European contribution to ITER.

From winding through heat treatment and on to insertion into radial plates, the toroidal field coil manufacturing process is complex and exacting, requiring unprecedented levels of tolerances and performance. In the videos, experts from the ASG consortium* and Europe speak of the technical challenges, the specialized tooling, and the qualification work underway.

You can see the two 6-minute videos on F4E's website.

*ASG consortium: Iberdrola Ingeniería y Construcción SAU, ASG Superconductors SpA and Elytt Energy SL



return to the latest published articles