Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Component delivery| A jewel in a box

    Sailing under the flag of Germany, the Regine is a mighty ship, strengthened for heavy cargo and equipped on its portside with two 750-tonne on-board cranes. Ha [...]

    Read more

  • Education | Make your own tokamak with 3D printing!

    It's not Lego, but it is definitely 'hands-on.' To offer a tangible device to illustrate the workings of magnetic confinement fusion in a tokamak, the ITER Orga [...]

    Read more

  • Worksite | Europe's Fusion for Energy is building the ITER installation

    Anyone driving to ITER can take full measure of the enormity of the project a few kilometers before reaching the destination. Gigantic cranes can be seen from a [...]

    Read more

  • Disruption mitigation | Experts in plasma disruptions gather online

    On 20-23 July, 120 international experts participated in the 1st IAEA Technical Meeting on Plasma Disruptions and their Mitigation, jointly organized by the Int [...]

    Read more

  • Start of assembly | World dignitaries celebrate a collaborative achievement

    Due to the constraints imposed by the COVID-19 pandemic, the crowd in the ITER Assembly Hall was small. But thanks to live broadcasting and video feed, the audi [...]

    Read more

Of Interest

See archived entries

12 minutes to understand TF coil manufacturing

Each toroidal field coil is made up of a winding pack (seven double pancakes plus radial plate) and a protective shell of stainless steel. At the La Spezia winding line, 750-metre lengths of toroidal field conductor will be bent into a D-shaped double spiral trajectory, and their length controlled to an accuracy of 500th of a millimetre per metre. (Click to view larger version...)
Each toroidal field coil is made up of a winding pack (seven double pancakes plus radial plate) and a protective shell of stainless steel. At the La Spezia winding line, 750-metre lengths of toroidal field conductor will be bent into a D-shaped double spiral trajectory, and their length controlled to an accuracy of 500th of a millimetre per metre.
The magnets responsible for confining the ITER plasma—the eighteen D-shaped toroidal field coils—will form an impressive superstructure within the ITER machine: at approximately 6,000 tonnes (coils plus cases), they will represent over one-fourth of the Tokamak's total weight.

In two new videos produced by the European Domestic Agency, we are taken inside a vast manufacturing facility in La Spezia, Italy, where preparations are under way for the fabrication of ten toroidal field coils (nine plus one spare) that are part of the European contribution to ITER.

From winding through heat treatment and on to insertion into radial plates, the toroidal field coil manufacturing process is complex and exacting, requiring unprecedented levels of tolerances and performance. In the videos, experts from the ASG consortium* and Europe speak of the technical challenges, the specialized tooling, and the qualification work underway.

You can see the two 6-minute videos on F4E's website.

*ASG consortium: Iberdrola Ingeniería y Construcción SAU, ASG Superconductors SpA and Elytt Energy SL



return to the latest published articles