Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • ITER DNA | A "case" study...

    In December last year, and again this year in early May, pre-welding fitting tests demonstrated that steel components as tall as a four-storey building (and wei [...]

    Read more

  • First plasma| Temporary in-vessel protection

    The vacuum vessel, the operating theatre of the ITER machine, needs to be protected against possible damage from the hot plasma at any given time during its ope [...]

    Read more

  • Divertor cassettes | Successful prototypes open way to series

    Before embarking on the fabrication of the 54 complex steel structures that will form a ring at the bottom of the ITER machine—the divertor cassettes—the Europe [...]

    Read more

  • Images of the week | Titan tool 90 percent complete

    Towering 22 metres above ground and weighing approximately 800 tonnes, the twin sector sub-assembly tools (SSAT) are formidable handling machines that will be u [...]

    Read more

  • Video | How does the ITER cryoplant work?

    Cold is essential to ITER—10,000 tonnes of superconducting magnets, the thermal shield that surrounds the machine, the cryopumps that achieve the high vacuum in [...]

    Read more

Of Interest

See archived articles

Major milestone at NSTX spherical tokamak

John Greenwald, Princeton Plasma Physics Laboratory

Mission accomplished: The completed first section of the NSTX-U center stack capped months of demanding preparations and close teamwork. (Click to view larger version...)
Mission accomplished: The completed first section of the NSTX-U center stack capped months of demanding preparations and close teamwork.
"If we had a script, I couldn't think of a better outcome." That's how Ron Strykowsky, head of the NSTX Upgrade, described recent results for a critical stage of the project's construction. Riding on the outcome were months of work on the first quadrant of magnetic field conductors for the tokamak's new center stack, which forms the heart of the $94 million upgrade.

The crucial stage called for sealing and insulating the first quadrant through a volatile process known as vacuum pressure impregnation (VPI). Preparing the nine 20 foot-long, 350-pound (150 kilo) copper conductors for this step required the coordinated efforts of engineers and some dozen skilled technicians. The multiple tasks included soldering cooling tubes into the conductors under the direction of Steve Jurczynski, and sandblasting, priming and wrapping the units with fiberglass tape in operations led by Mike Anderson.

Read more on PPPL website.


return to the latest published articles