Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Summer postcards from the ITER worksite

    The latest harvest of ITER construction photos may be taken from the same point—the tallest crane on site—but there is always an abundance of new detail to be g [...]

    Read more

  • The ring fortress

    ITER'ssteel-and-concretebioshield has become the definingfeature of Tokamak Complex construction. Twolevels only remain to be poured (out of six). It is a 'rin [...]

    Read more

  • The wave factory

    A year ago, work was just beginning on the steel reinforcement for the building's foundation slab. The Radio Frequency Heating Building is now nearing the last [...]

    Read more

  • It's all happening inside

    Since the giant poster was added to the Assembly Hall's completed exterior in June 2016 the building has lookedfrom afar like a finished project. Butinside, tea [...]

    Read more

  • Along skid row

    They look like perfectly aligned emergency housing units. But of course they're not: the 18 concrete structures in the ITER cryoplant are massive pads that will [...]

    Read more

Of Interest

See archived articles

Major milestone at NSTX spherical tokamak

-John Greenwald, Princeton Plasma Physics Laboratory

Mission accomplished: The completed first section of the NSTX-U center stack capped months of demanding preparations and close teamwork. (Click to view larger version...)
Mission accomplished: The completed first section of the NSTX-U center stack capped months of demanding preparations and close teamwork.
"If we had a script, I couldn't think of a better outcome." That's how Ron Strykowsky, head of the NSTX Upgrade, described recent results for a critical stage of the project's construction. Riding on the outcome were months of work on the first quadrant of magnetic field conductors for the tokamak's new center stack, which forms the heart of the $94 million upgrade.

The crucial stage called for sealing and insulating the first quadrant through a volatile process known as vacuum pressure impregnation (VPI). Preparing the nine 20 foot-long, 350-pound (150 kilo) copper conductors for this step required the coordinated efforts of engineers and some dozen skilled technicians. The multiple tasks included soldering cooling tubes into the conductors under the direction of Steve Jurczynski, and sandblasting, priming and wrapping the units with fiberglass tape in operations led by Mike Anderson.

Read more on PPPL website.


return to the latest published articles