Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • The physics behind the transition to H-mode

    H‐mode—or thesudden improvement of plasma confinement in the magnetic field of tokamaksby approximatelya factor of two—is thehigh confinement regime that all mo [...]

    Read more

  • In search of the green plasma

    Sébastien König's core competence is in planning and scheduling; his passion is in understanding the workings of the Universe. In his previous life, before join [...]

    Read more

  • An outing into the future

    Open Doors days occur with scientific regularity at ITER (spring and autumn) and yet—due to the rapid evolution of work on site—each event offers something new. [...]

    Read more

  • Fusion "grandfather" tells family story

    Grandfathers like to tell stories. And Robert Aymar, the 'grandfather' of the French fusion community, is no exception. 'Being so old,' he quipped at last week' [...]

    Read more

  • An AC/DC adapter ... ITER size

    Like flashlight and smartphones, the ITER magnets—all 10,000 tonnes of them—will run on direct current (DC). And like flashlight and smartphones they will need [...]

    Read more

Of Interest

See archived articles

Major milestone at NSTX spherical tokamak

-John Greenwald, Princeton Plasma Physics Laboratory

Mission accomplished: The completed first section of the NSTX-U center stack capped months of demanding preparations and close teamwork. (Click to view larger version...)
Mission accomplished: The completed first section of the NSTX-U center stack capped months of demanding preparations and close teamwork.
"If we had a script, I couldn't think of a better outcome." That's how Ron Strykowsky, head of the NSTX Upgrade, described recent results for a critical stage of the project's construction. Riding on the outcome were months of work on the first quadrant of magnetic field conductors for the tokamak's new center stack, which forms the heart of the $94 million upgrade.

The crucial stage called for sealing and insulating the first quadrant through a volatile process known as vacuum pressure impregnation (VPI). Preparing the nine 20 foot-long, 350-pound (150 kilo) copper conductors for this step required the coordinated efforts of engineers and some dozen skilled technicians. The multiple tasks included soldering cooling tubes into the conductors under the direction of Steve Jurczynski, and sandblasting, priming and wrapping the units with fiberglass tape in operations led by Mike Anderson.

Read more on PPPL website.


return to the latest published articles