Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Neutral Beam Test Facility | Lessons learned from SPIDER, a full-size negative ion source

    SPIDER finished its first test campaign in late November 2021 and is now entering an upgrade phase. During this time, the testbed will be shut down for about on [...]

    Read more

  • Manufacturing | Korea completes a third vacuum vessel sector

    A third 40-degree sector of the ITER vacuum vessel has exited the Hyundai Heavy Industries production line in Ulsan, Korea. Sectors representing one-third of th [...]

    Read more

  • On-site coil manufacturing | Two more to go!

    In the European winding facility on site, two large poloidal field coils have already left the manufacturing line. Two others are currently advancing through th [...]

    Read more

  • Manufacturing | Completion of the first vacuum vessel gravity support

    The factory acceptance test on the first ITER vacuum vessel gravity support has been successfully completed at Haneul Engineering in Gunsan, Korea. Under the 8, [...]

    Read more

  • Technology | Hail showers in ASDEX Upgrade for ITER disruption mitigation

    Just before the 2021 Christmas holiday break, the team at the ASDEX Upgrade tokamak successfully fired frozen deuterium pellet fragments into a plasma as part o [...]

    Read more

Of Interest

See archived entries

A passion for tritium

 (Click to view larger version...)
Like his grandfather, a coal miner in Poland's Silesia region who emigrated to Germany in the early 1920s, Manfred Glugla, ITER Fuel Cycle Engineering Division Head, works to supply energy to mankind.

The family settled near Dortmund in the Westphalian basin where Manfred grew up. At age 14, he entered professional life as an apprentice in a chemical lab.

The young lad was already curious about everything, from the inner workings of objects to the physics and math involved in his day-to-day work. "There were graduate students in that lab also, and they kept telling me: 'Go to evening school, it's not too late! This can't be the end of your education!' And that's exactly what I did ..."

Thanks to evening school the young apprentice earned his undergraduate degree, went on to receive a diploma in chemical engineering at an "Applied Science University," wrote a thesis in physical chemistry on tritium diffusion, and eventually, in 1984, obtained his PhD summa cum laude. "I wanted to know and understand everything," says Manfred today. "When only three courses out of eight were required, I managed to take them all—electronics, group theory, radiochemistry, you name it ... I was just crazy about learning."

Manfred married at 21 and kept studying for the following 12 years. "My wife supported me all that time ... I owe her a lot," he says. He owes a lot, also, to his family background and to his early work experience. "My values have remained those I was brought up with. I fix things that most people just throw away ... I'm still using the HP scientific calculator that I bought in 1974 and I still drive my old 1984 Land Cruiser to commute between Aix and ITER."

Starting off as an apprentice provided Manfred with a strong sense of "feasibility and manufacturability." "I have a gut feeling," he says, "for what is doable and what is not." In science projects like ITER there is always something that deviates from theory and that's where the apprentice has something important to share with the physicists.

Manfred joined the European fusion program in Karlsruhe in 1984 and worked for ITER "from day one." His PhD was in surface science and metal physics but the position he was offered was in the Tritium Lab that was being constructed at the time. Eventually, Manfred rose to head the facility.

Tritium has been at the core of his professional life and interests ever since. Manfred can talk about tritium as a horticulturist would talk about a rare orchid, praising its unique properties, marvelling at its "gyro-magnetic ratio" and pondering its particular relationship with hydrogen—"the same and yet so different ..."
 
"Tritium," says the ITER Fuel Cycle Engineering Division Head, "is a gift of Mother Nature ..."



return to the latest published articles