Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Bookmark | "ITER: the Giant Fusion Reactor," second edition

    'Is ITER the 'star of science' whose creation has been made possible by humankind's sophisticated mastery of the laws of nature and the powers of technology? Or [...]

    Read more

  • Fusion world | ITER and ASDEX Upgrade in the monastic quiet

    The ASDEX Upgrade tokamak in Germany has been helping to establish the scientific basis for the optimization of the tokamak approach to fusion energy since 1991 [...]

    Read more

  • On site | There goes the long-standing crane

    In October 2014, close to ten years ago, five giant cranes were installed on and around the Tokamak Complex basemat slab. As work progressed to erect the Comple [...]

    Read more

  • Portfolio | Sector repair has started

    Built up against vacuum vessel sector #7, the scaffolding reaches almost 20 metres in height and masks the massive component. Streaks of blinding light, filtere [...]

    Read more

  • Fusion world | Public/private consortium is building the DTT tokamak

    The Divertor Test Tokamak in Italy is creating a new model for engagement with industry in fusion research. ITER helped to pave the way. The Divertor Test Tokam [...]

    Read more

Of Interest

See archived entries

Fusion draws on Japanese traditions

Assistant Professor Takumi Chikada's studies show that a layer of erbium oxide only tens of microns thick on a steel surface could reduce permeation of tritium by 100 000 times.© Rob-Keller from flickr.com (Click to view larger version...)
Assistant Professor Takumi Chikada's studies show that a layer of erbium oxide only tens of microns thick on a steel surface could reduce permeation of tritium by 100 000 times.© Rob-Keller from flickr.com
The Japanese people have a long history of creating ceramics of great beauty and elegance. Now they are putting their skills towards the search for materials for future fusion plants — in this case not crafting elegant forms, but elegant solutions: ceramics are nearly impervious to tritium.

In a colloquium delivered at JET last week, Assistant Professor Takumi Chikada from the University of Tokyo outlined promising progress in research into the ceramic coating, erbium oxide, which may prove to be a vital coating for use in tritium-carrying pipework. "Without solving this problem it will be impossible to operate a fusion reactor," he stated.

Because of its very small size, tritium tends to permeate through materials readily — an undesirable characteristic in a tritium processing plant, where tritium would be exposed to a large surface area as it passes through cooling, ducting and processing pipework.

Assistant Professor Chikada's results showed that a layer of erbium oxide only tens of microns thick on a steel surface could reduce permeation of tritium by 100 000 times.

Erbium oxide was originally chosen as an insulation coating because it has a high thermodynamic stability and is resistant to liquid lithium-lead — a proposed blanket material for fusion plants, which is corrosive to many materials.

Read more on the EFDA website.


return to the latest published articles