Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Cryostat thermal shield | A "strong back" for a fragile component

    The lower cylinder thermal shield is a large silver-plated component, circular in shape and five metres tall, which fits inside the depression in the cryostat b [...]

    Read more

  • Diagnostic shielding | B4C ceramic bricks prove their worth

    A number of materials can effectively shield diagnostic equipment from the neutron flux coming from the plasma. To find the best one, the diagnostics team at IT [...]

    Read more

  • Image of the week | The cryostat top lid, batch after batch

    Batch after batch, the elements for the top lid of the ITER cryostat keep arriving from India. As of today, 7 out of the 12 required segments have been delivere [...]

    Read more

  • Cooling water system | The tanks within a tank

    Deep inside the bowels of the Tokamak Building, the entrance to one of most spectacular rooms of the whole installation resembles that of a broom cupboard. [...]

    Read more

  • ITER assembly | Last major assembly contract signed

    One year after finalizing two major machine assembly contracts, the ITER Organization has chosen the contractors who will carry out assembly and installation ac [...]

    Read more

Of Interest

See archived entries

Why "plasma"?

The inventor of the ''Langmuir probe'', which measures both the temperature and the density of electrons in a plasma, Irving Langmuir received the 1932 Nobel Prize in Chemistry for his work in surface chemistry. (Click to view larger version...)
The inventor of the ''Langmuir probe'', which measures both the temperature and the density of electrons in a plasma, Irving Langmuir received the 1932 Nobel Prize in Chemistry for his work in surface chemistry.
"Plasma" is certainly the most frequently pronounced word in the fusion community. But where does the name come from? And why do we use the same term to describe an ionized gas—the "fourth state of matter"—and the yellowish liquid that holds the blood cells in suspension in a living body?

The word "plasma," derived from the ancient Greek "to mold," had been in use in medicine and biology for some decades when American chemist and physicist Irving Langmuir (1881-1957) began experimenting on electrical discharges in gas at the General Electric Research and Development Center in upstate New York.

In 1927, Langmuir was working with mercury vapour discharges, studying ion densities and velocity distribution in mercury arc columns. Working closely by his side, a younger physicist named Harold M. Mott-Smith was to remember in a 1971 letter he wrote to Nature how Langmuir finally suggested the word "plasma" to describe the particular distribution he was observing.

Langmuir and his team were acutely aware, as Mott-Smith wrote, that "the credit of a discovery goes not to the man who makes it, but to the man who names it," adding: "Witness the name of our continent," which was 'discovered' by Columbus but christened by the lesser figure Amerigo Vespucci.

The team spent days tossing around names to best describe what they had observed. But nothing came out of these brainstorming sessions until Langmuir "pointed out that the equilibrium part of the discharge acted as a sort of substratum carrying particles of special kinds, like high-velocity electrons [...] molecules and ions of gas impurities"—just in the same way blood plasma carries around red and white cells, proteins, hormones and germs.

Langmuir "proposed to call our uniform discharge a 'plasma.' Of course, we all agreed," writes Mott-Smith. It took some time, however, for the science community to adopt a word from the field of medicine and biology and give it a different meaning. "The scientific world of physics and chemistry looked askance at this uncouth word and were slow to accept it in their vocabulary [...] Then all of a sudden, long after I had left the laboratory, to my pleased surprise, everybody started to talk about plasmas."

Plasmas have come a long way since 1927. It is now, literally, a household name: Langmuir and his team would have been quite surprised if told that in the early years of the 21st century that plasma TVs would be much more common than the Bakelite radios of his time.


return to the latest published articles