Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • A world in itself

    From a height of some 50 metres, you have the entire ITER worksite at your feet. The long rectangle of the Diagnostics Building stands out in the centre, with [...]

    Read more

  • US completes toroidal field deliveries for ITER

    The US Domestic Agency achieved a major milestone in February by completing the delivery of all US-supplied toroidal field conductor to the European toroidal fi [...]

    Read more

  • Thin diagnostic coils to be fitted into giant magnets

    Last week was marked by the first delivery of diagnostic components—Continuous External Rogowski (CER) coils—from the European Domestic Agency to the ITER Organ [...]

    Read more

  • Addressing the challenge of plasma disruptions

    Plasma disruptions are fast events in tokamak plasmas that lead to the complete loss of the thermal and magnetic energy stored in the plasma. The plasma control [...]

    Read more

  • Blending (almost) seamlessly into the landscape

    Located in the foothills of the French Pre-Alps, the ITER installation blends almost seamlessly into the landscape. The architects' choice ofmirror-like steel c [...]

    Read more

Of Interest

See archived articles

Europe delivers a world class test facility

-Fusion for Energy

On 22 March, the EDIPO magnet, the core of the EDIPO facility, reached a magnetic field of 12.5 Tesla. (Click to view larger version...)
On 22 March, the EDIPO magnet, the core of the EDIPO facility, reached a magnetic field of 12.5 Tesla.
If we are truly committed to the idea of a sustainable energy mix—with fusion as one of the elements—then we need to invest in facilities that will bring us a step closer to the realization of commercial fusion by helping us test the technology and the components of current and future fusion devices.

This is precisely the purpose of the European Dipole project (EDIPO) launched in 2005, whose mission is to manufacture a high field magnet that would ultimately be used to test ITER cable-in-conduit conductors with current up to 100 kA. Switzerland's Paul Scherrer Institute (PSI), at the Centre of Research in Physics and Plasma (CRPP), is hosting this facility that was built thanks to a collaboration between CRPP, BNG (Babcock Nöll), the European Domestic Agency for ITER, and the European Commission.

The stakes for EDIPO were high from the very start because it had to meet two important conditions. First, it had to offer the fusion community the possibility to test short sample conductors in a magnetic field up to 12.5 Tesla—an unprecedented level for this type of facility—in order to mimic the ITER environment. Second, the conductors had to be tested at this level of magnetic field over a length equivalent to about 800 mm, which is roughly two times the high field length of the conductors currently tested in SULTAN.
Read more in the Fusion for Energy Newsletter.


return to the latest published articles