Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Worksite postcards | Under fog and autumn light

    Due to its proximity to the Durance River and to the narrow gully spanned by the Bridge of Mirabeau, the area around ITER often experiences a peculiar meteorolo [...]

    Read more

  • Assembly Hall | Another massive paint job

    By the end of December, the massive painting job in the Assembly Hall will be complete and the building's floor will be as white and pristine as the landscape i [...]

    Read more

  • ITER India | Testing a neutral beam for diagnostics

    Every 23 seconds during fusion operation, a probe beam will penetrate deep into the core of the ITER plasma to aid in the detection of helium ash—one of fusion' [...]

    Read more

  • Welded attachments | Follow the laser projections

    How do you position 150,000 welded attachments on to a vacuum vessel the size of a house, each one needing to be accurately placed to less than a 4 mm target? [...]

    Read more

  • Visit | Our neighbour the Nobel

    In 2018, the Nobel Prize in Physics was awarded to Gérard Mourou for his work on ultra-short, extremely high-intensity laser pulses—the so-called 'chirped pulse [...]

    Read more

Of Interest

See archived entries

Europe delivers a world class test facility

Fusion for Energy

On 22 March, the EDIPO magnet, the core of the EDIPO facility, reached a magnetic field of 12.5 Tesla. (Click to view larger version...)
On 22 March, the EDIPO magnet, the core of the EDIPO facility, reached a magnetic field of 12.5 Tesla.
If we are truly committed to the idea of a sustainable energy mix—with fusion as one of the elements—then we need to invest in facilities that will bring us a step closer to the realization of commercial fusion by helping us test the technology and the components of current and future fusion devices.

This is precisely the purpose of the European Dipole project (EDIPO) launched in 2005, whose mission is to manufacture a high field magnet that would ultimately be used to test ITER cable-in-conduit conductors with current up to 100 kA. Switzerland's Paul Scherrer Institute (PSI), at the Centre of Research in Physics and Plasma (CRPP), is hosting this facility that was built thanks to a collaboration between CRPP, BNG (Babcock Nöll), the European Domestic Agency for ITER, and the European Commission.

The stakes for EDIPO were high from the very start because it had to meet two important conditions. First, it had to offer the fusion community the possibility to test short sample conductors in a magnetic field up to 12.5 Tesla—an unprecedented level for this type of facility—in order to mimic the ITER environment. Second, the conductors had to be tested at this level of magnetic field over a length equivalent to about 800 mm, which is roughly two times the high field length of the conductors currently tested in SULTAN.
Read more in the Fusion for Energy Newsletter.


return to the latest published articles