Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Cooling water system | The tanks within a tank

    Deep inside the bowels of the Tokamak Building, the entrance to one of most spectacular rooms of the whole installation resembles that of a broom cupboard. [...]

    Read more

  • ITER assembly | Last major assembly contract signed

    One year after finalizing two major machine assembly contracts, the ITER Organization has chosen the contractors who will carry out assembly and installation ac [...]

    Read more

  • ITER Science | The towering importance of data

    The most important product of ITER is data, which will be used to produce the information needed to build models for DEMO and commercial reactors—and much more. [...]

    Read more

  • Image of the week | In my arms!

    In late November, one part of the 'shell' that encloses every vacuum vessel sector—a right-hand outboard thermal shield panel—had been mounted on a giant pre-as [...]

    Read more

  • Brexit | The UK will remain part of ITER

    'It was a great Christmas present,' says Ian Chapman, head of the United Kingdom Atomic Energy Authority. Many in the ITER community would agree. The Brexit neg [...]

    Read more

Of Interest

See archived entries

Resisting the thrust of two Space Shuttles

A one-piece tie plate was forged and heat treated by Kind, LLC in Gummersbach, Germany.© US ITER (Click to view larger version...)
A one-piece tie plate was forged and heat treated by Kind, LLC in Gummersbach, Germany.© US ITER
US ITER is building one of the world's largest and most powerful electromagnets to energize the ITER Tokamak; the 13-metre-tall central solenoid will be located in the heart of the machine. In order to maintain structural integrity in the face of thousands of tons of force, the solenoid requires a specially designed support structure to hold the electromagnet in place.

"With a typical solenoid, the electromagnetic forces pull the magnet together. But the ITER central solenoid is made of six different modules which are not all pulling together at the same time. They can be opposing each other with large magnetic forces," notes Bob Hussung, the lead mechanical engineer for central solenoid structures at the US ITER project managed by Oak Ridge National Laboratory.

The forces affecting the central solenoid can be very large, in the range of 60 meganewtons, or over 6,000 tons of force. "For perspective, the Space Shuttle at lift-off had about 30 meganewtons of thrust. So we are handling about two Space Shuttles' worth of magnetic thrust," says Hussung. "With ITER, we're avoiding a launch! We're dealing with all of these magnetic forces, and we have to hold the solenoid in a very accurate position."

To prevent movement of the modules in the solenoid during tokamak operations, the support structure is designed like a large cage, with 18 tie-plates outside the modules and 9 inside, plus lower and upper key blocks which connect to the tie-plates and attach the entire structure to the ITER tokamak. The complete central solenoid assembly weighs 1,000 tonnes.

Two approaches are being studied to determine the best way to fabricate the long tie-plate structures. A welded tie-plate, manufactured by Major Tool, Inc. in Indianapolis, Ind., has performed well in initial testing, with results within the ITER requirement margin. A single piece tie-plate, forged by Kind, LLC in Gummersbach, Germany and machined by G&G Steel, Inc. in Russellville, Ala., is also being fabricated; testing will begin in May.

Hussung observes, "The big question for the one-piece tie-plate was 'can you fabricate it.' The answer is clearly yes, it is forgeable. Now the mechanical properties need to be confirmed through testing at liquid helium temperatures."

Read more on the US ITER website.


return to the latest published articles