Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Top management | Tim Luce, Head of Science & Operation

    What does a seven-year-old growing up in a small community in Arkansas know about what it means to be an 'atomic scientist'? Probably not much. Except, remember [...]

    Read more

  • Blanket shield blocks | Series production milestone in Korea

    It takes many months for a single forged block of stainless steel to be transformed into the complex shape of an ITER blanket shield block, full of gullies, cha [...]

    Read more

  • Image of the week | 5 top lid segments expected

    A little less than five years ago, in December 2015, the first segments of the ITER cryostat (out of a total of 54) were delivered to the construction site from [...]

    Read more

  • On site | As ITER begins assembly, HVAC becomes mission critical

    Not only will heating, ventilation and air conditioning (HVAC) help protect people and equipment during the assembly phase at ITER, but they will also help ensu [...]

    Read more

  • Vacuum vessel | Sector #6 is leak tight

    The first ITER vacuum vessel sector has passed a helium leak test on site with flying colours. Back in March 2020, as experts from the Korean Domestic Agency [...]

    Read more

Of Interest

See archived entries

Toroidal field coils: strand production passes 400 tonnes

Krista Dulon

Strand production has been building steadily since 2009 and has now topped 400 tons. Three of the eight suppliers that have been qualified to manufacture niobium-tin (Nb3Sn) strand for ITER are new to the worldwide market. (Click to view larger version...)
Strand production has been building steadily since 2009 and has now topped 400 tons. Three of the eight suppliers that have been qualified to manufacture niobium-tin (Nb3Sn) strand for ITER are new to the worldwide market.
"Toroidal field strand procurement is going rather well," reports Arnaud Devred, who heads the Superconductor Systems & Auxiliaries Section at ITER. "We are on schedule."

Manufactured by suppliers in six ITER Domestic Agencies—China, Europe, Japan, Korea, Russia and the USA—production of niobium-tin (Nb3Sn) superconducting strand for ITER's toroidal field coils began in 2009 and has now topped 400 tonnes.

That's more than 80,000 kilometres of strand—enough to go around the world twice at the Equator.

Worldwide capacity has had to ramp up significantly to meet the project's demand. There are eight qualified suppliers for ITER, including three that are new to the market (one in China, one in Korea and one in Russia). In 2011 and 2012, these eight suppliers, together, turned out over 100 tonnes annually.

"One hundred tonnes per annum represents a spectacular increase in the worldwide production of this multifilament wire which was estimated, before ITER production, at a maximum of 15 tonnes per year," says Devred. "As you would expect, the price has come down, and this 'surge' in production for ITER may well open up new markets."

Truly a worldwide collaboration: From cable produced in six Domestic Agencies and jacketed in five, toroidal field conductor will be shipped to coil manufacturers in Europe and Japan for winding. (Click to view larger version...)
Truly a worldwide collaboration: From cable produced in six Domestic Agencies and jacketed in five, toroidal field conductor will be shipped to coil manufacturers in Europe and Japan for winding.
Eighteen toroidal field coils will be produced for ITER plus a nineteenth (a spare). That's approximately 420 tonnes of strand, give or take a bit of spare material planned by each Domestic Agency. The production curve will begin to flatten in 2013 (see graph above) as contracts are brought to a close in several Domestic Agencies.

Devred estimates the market value of the toroidal field strand procurement at over EUR 200 million.

"It has been very satisfying to see this procurement unfold and to watch our international collaboration develop at every step in the process," says Devred. "In addition to the sheer scale of this procurement, what is also remarkable is the quality control and quality assurance that we have been able to set into place."

Four of the ITER suppliers are using a production technique called internal tin, while another four are using a bronze process. "It has been up to us to demonstrate that we can control both types of production within technical requirements," explains Devred, "We weren't sure of ourselves since this is the first time there has been such a large-scale production of internal tin. Test data shows that we can do it effectively."  

Billet registration in the Conductor Database in June 2013. From metal billets containing niobium filaments, a copper matrix and a tin source—typically bronze (copper-tin) or pure tin—manufacturers draw down strands of less than one millimetre in diameter. (Click to view larger version...)
Billet registration in the Conductor Database in June 2013. From metal billets containing niobium filaments, a copper matrix and a tin source—typically bronze (copper-tin) or pure tin—manufacturers draw down strands of less than one millimetre in diameter.
Quality testing for ITER calls for statistical process control on critical parameters, systematic low-temperature measurements on strands, and regular low-temperature measurements on full-size conductors (25 percent of toroidal field conductor unit lengths are tested). This testing data is stored, like manufacturing data, in ITER's conductor database, which is currently fed by approximately 150 users, including suppliers and Domestic Agencies. Some 350,000 individual objects are stored in this web database—created to monitor the quality assurance/quality control processes of the conductor Procurement Arrangements.

Devred credits the "early days" with setting up the processes and systems that are proving to work today for conductor procurement: before the signature of the first ITER Procurement Arrangement, the specifications for ITER conductors were written by a committee made up of worldwide experts in large conductor procurement. Very tight quality control was developed that imposes many control points at each stage of fabrication verified by the Domestic Agencies and the ITER Organization. "I believe this will be the key to our final success," says Devred. "I am confident that what is coming off of the manufacturing lines is as good as can be made."

Read more on how strand is produced in Newsline 140.


return to the latest published articles