Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Image of the week | The platform's quasi-final appearance

    Since preparation work began in 2007 on the stretch of land that was to host the 42-hectare ITER platform, regular photographic surveys have been organized to d [...]

    Read more

  • Cryopumps | Preparing for the cold tests

    Before being delivered to ITER, the torus and cryostat cryopumps are submitted to a  comprehensive series of factory acceptance tests. This is not sufficie [...]

    Read more

  • Fusion technologies | Closing a fusion schism

    Historically, inertial confinement and magnetic confinement approaches to fusion have been parallel, separate processes. The ITER Private Sector Fusion Workshop [...]

    Read more

  • Toroidal field coil celebration | "A good day for the world"

    A little before 2:00 a.m. on 17 April 2020 a powerful transport trailer, accompanied by dozens of technical and security vehicles, passed the gates of the I [...]

    Read more

  • Press conference | New baseline to prioritize robust start to exploitation

    At a press conference on 3 July attended by approximately 200 journalists and key ITER stakeholders, ITER Director-General Pietro Barabaschi answered questions [...]

    Read more

Of Interest

See archived entries

Shake, rattle and roll

A standing army of seismic pads awaits the hypothetical ''maximum historically plausible'' earthquake. (Click to view larger version...)
A standing army of seismic pads awaits the hypothetical ''maximum historically plausible'' earthquake.
The ITER Tokamak Complex will rest on about 500 seismic pads that will isolate it from ground motion in the case of an earthquake.

A similar system is being installed at Réacteur Jules-Horowitz  (RJH)—the research reactor that is presently under construction at CEA-Cadarache.

Seismic pads are twenty centimetre-thick "sandwiches" made of six alternate layers of rubber and metal plate. Placed atop concrete columns that rise 2.2 metres from the lower raft of the structure (the groundmat), these 90 by 90 centimetre pads support the upper raft (the basemat) that is the actual "floor" of the installation.

Each of RJH's 195 pads will each bear a weight of 550 tonnes ... and could bear considerably more. The pads are arranged in such a way that the 110,000 tonnes of the installation are uniformly distributed. The same principle will be applied to ITER, where the facility's 350,000 tonnes will be distributed over approximately 600 pads.

Seismic pads are the key to what engineers call "aseismic base isolation." Their flexible structure filters the frequency of the shake, rattle and roll—or more appropriately, the accelerations—that a hypothetical earthquake would cause. "The system is simple, robust and requires little maintenance," says Lionel Germane, a civil engineer at RJH. "It can reduce a potential acceleration of 0.70 G to a mere 0.13 G."

A concept for the ITER Tokamak Complex seismic pad layout. (Click to view larger version...)
A concept for the ITER Tokamak Complex seismic pad layout.
Despite the cost of the pads themselves, and the necessity of having two reinforced concrete rafts instead of one, there is economic benefit attached to implementing seismic pads. "Had we not chosen this solution, structural modifications to withstand the effects of an earthquake would have been much costlier."
 
In order to ascertain whether seismic pads can retain their quality and characteristics throughout the installations' lifetimes, a joint qualification program was implemented by ITER and RJH in 2005. "The buildings' mechanical properties rely necessarily on those of the seismic pads," explains Laurent Patisson who managed the qualification program on CEA side before joining ITER as Nuclear Building Section Leader. "It is therefore extremely important to know their variability over time and to integrate this data into the building design."

Seismic pads do age—but slowly. Accelerated aging tests and various mechanical "torture" show that they lose 20 to 25 percent of their flexibility after 75 years, which is longer than the planned lifespan of both installations, including final shutdown and dismantling phases. "In any case," says Lionel, "we must be able to replace any pad if need arises."

In both RJH and ITER, the seismic pad system is sized to withstand an earthquake whose hypothetical intensity is based on data from historical and geological seismic events.

Parameters from the 1708 Manosque earthquake, from the 1909 Lambesc earthquake, and from a "paleo-earthquake" that occurred in the Middle Durance Valley some 9,000 to 26,000 years ago have been computed and their intensity increased to define a "maximum historically-plausible" seismic event.

It is against that ghost of an earthquake that the standing army of pads will protect both installations.



return to the latest published articles