Sophisticated miniatures for ITER

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Augmented reality | Assessing the future work environment

    As part of their collaboration within the Site Support Agreement*, ITER and its neighbour CEA are developing a novel approach to explore, analyze and assess the [...]

    Read more

  • Diagnostics and instrumentation | First welding on the vacuum vessel

    Beginning in 2035, ITER will open a window into "burning plasmas"—a state of matter that exists in the core of stars only. Observing, assessing and mo [...]

    Read more

  • Assembly | Machining workshop opens on site

    Construction of an on-site machining workshop began in December 2019 and was completed on schedule in September 2020.The new workshop will be operated by the D [...]

    Read more

  • Neutral Beam Test Facility | Power is ready for the prototype injector

    The European Domestic Agency has carried out successful site acceptance tests at the ITER Neutral Beam Test Facility on power supply equipment installed ov [...]

    Read more

  • In-vessel coils | First components arrive on site

    ITER has received the first shipments of mineral-insulated conductor for ITER's in-vessel coils. The first lengths are destined for winding and bending trials a [...]

    Read more

Of Interest

See archived entries

Sophisticated miniatures for ITER

Bolometer lines of sight being measured in the plasma vessel of the ASDEX Upgrade fusion device by means of a robot (photo: Volker Rohde, IPP) (Click to view larger version...)
Bolometer lines of sight being measured in the plasma vessel of the ASDEX Upgrade fusion device by means of a robot (photo: Volker Rohde, IPP)
The contract for developing an important diagnostic method for ITER went to the Max Planck Institute of Plasma Physics (IPP) in Garching, Germany. The European Domestic Agency (Fusion for Energy, F4E) will be funding a German research and industrial consortium, headed by IPP, to the amount of EUR 4.8 million over four years. The objective is the advanced development of so-called bolometer cameras for recording the heat and X-radiation emitted from the ITER plasma. Award of the contract was based on a preparatory phase supported with national project funds in which the participants' suitability for this and other ITER tasks was verified.

The measuring method records the heat and light emission from the infrared to X-ray region and pinpoints their origin in the plasma. The radiation power is part of the total energy balance of the plasma. It has to be known in order to control the plasma or apply certain modes of operation.

Bolometer measurement on the ASDEX Upgrade plasma. On the left the numerous lines of sight of the bolometers, which scan the cross-section of the plasma. Result on the right: The values of the radiation power measured along these lines of sight were used to calculate its origin in the plasma. This ''deconvolution'' or tomographic reconstruction shows that the highest density of the radiation power occurs at the bottom edge of the plasma (the divertor area). As intended, the hot inner plasma scarcely emits any radiation power. (Graphic: Matthias Bernert, IPP) (Click to view larger version...)
Bolometer measurement on the ASDEX Upgrade plasma. On the left the numerous lines of sight of the bolometers, which scan the cross-section of the plasma. Result on the right: The values of the radiation power measured along these lines of sight were used to calculate its origin in the plasma. This ''deconvolution'' or tomographic reconstruction shows that the highest density of the radiation power occurs at the bottom edge of the plasma (the divertor area). As intended, the hot inner plasma scarcely emits any radiation power. (Graphic: Matthias Bernert, IPP)
The measuring principle of a bolometer? A metal plate the size of a postage stamp absorbs the radiation emitted from the plasma along a narrow line of sight, thus heating up. The electric resistance of a conductor located below it changes according to the temperature and is therefore a direct measure of the radiation power. Additional calculations and measured data allow the radiation to be assigned to its origin in the plasma insofar as a sufficient number of bolometers are available. This reveals exactly what site in the plasma has emitted what power.

The method, developed at and patented by IPP, has been successfully applied for many years. However, the ITER large-scale device imposes new requirements: unlike in previous machines, the detectors will have to withstand impinging fusion neutrons and also be capable of working reliably at temperatures of up to 450 degrees.

Read the full Press Release here.


return to the latest published articles