Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Computer-Aided Design | A new platform with Australia

    In September 2016, the signature of a Cooperation Agreement between the Australian Nuclear Science and Technology Organisation (ANSTO) and the ITER Organization [...]

    Read more

  • Ten years later | A prodigious adventure

    ITER began its existence as an aspiration in the early 1980s, as actors in the fusion community called for the joint machine that would demonstrate the feasibil [...]

    Read more

  • Image of the week | An impromptu visit

    Afteraddressing the UN Climate Change Conference on 15 November, French President Emmanuel Macron toured thecolourful COP23 exhibition zone. It was towards the [...]

    Read more

  • Cryoplant | How to install a compressor

    In order to properly install a helium compressor skid on its concrete pad, you need to start with a large push broom to sweep away the dust that inevitably accu [...]

    Read more

  • Magnetic system | Nine rings to fight the force

    Work on the pre-compression ringsof the ITER magnet system progresses in Europe, where work on a full-scale prototype is underway. These technically challenging [...]

    Read more

Of Interest

See archived articles

Installation of accelerator begins in Rokkasho

European Domestic Agency, Fusion for Energy

In November 2013 a joint team of European and Japanese engineers unpacked the injector components shipped from France and proceeded with pre-installation activities. LIPAc is a 1:1-scale prototype of the IFMIF accelerator. (Click to view larger version...)
In November 2013 a joint team of European and Japanese engineers unpacked the injector components shipped from France and proceeded with pre-installation activities. LIPAc is a 1:1-scale prototype of the IFMIF accelerator.
The International Fusion Materials Irradiation Facility (IFMIF) in Rokkasho, Japan will house a state-of-the-art accelerator capable of creating the kind of high-powered neutrons that will interact with first wall materials in future demonstration and commercial fusion power plants.

The accelerator's technological feasibility is being tested through the design, manufacturing, installation, commissioning and testing activities of a 1:1-scale prototype accelerator known as LIPAc (Linear IFMIF Prototype Accelerator), whose aim is to generate a 140 mA deuteron beam at 100 keV.

Following months of preparatory work, LIPAc activities have reached an important milestone. The deuteron injector—designed and manufactured at CEA Saclay in France as one of the voluntary contributions to the IFMIF project from France—passed acceptance tests and was shipped to Rokkasho last year. In November 2013 a joint team of European and Japanese engineers unpacked the injector components and proceeded with pre-installation activities under the guidance of Raphael Gobin and Patrick Girardot, experts from CEA. The first phase was completed at the end of the year and the installation phase has been initiated under the monitoring of the European Domestic Agency's Broader Fusion Development Department based Garching, Germany. The aim is to complete the assembly of the accelerator components and begin testing by early 2017.

IFMIF is part of the Broader Approach Agreement signed between Europe and Japan. The role of the European Domestic Agency for ITER is to coordinate the European IFMIF activities supported by the voluntary contributions of Belgium, France, Germany, Italy, Spain and Switzerland. Its main responsibilities are the integration and follow‐up of activities conducted by European groups working on the three projects of IFMIF: the prototype accelerator, the test facility and the target facility.

You can read the original article and find out more about the Broader Approach here.



return to the latest published articles