Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Art and ITER | Two sisters, two suns and a monument to fusion

    Amid the gentle slopes of Asciano, Italy, there stands a stone window that frames the Sun on the summer solstice. It looks as though it might have always been t [...]

    Read more

  • Staff | The men and women of ITER

    They hail from Ahmedabad and Prague ... from Naka and Moscow ... from Seoul, Hefei, Atlanta and hundreds of other towns and cities across the 35 nations partici [...]

    Read more

  • ITER Talks | All about ITER and fusion

    Beginning this autumn, the ITER Organization will be launching a new video series to inform, inspire and educate. The first video—introducing the series and off [...]

    Read more

  • Image of the week | A majestic components enters the stage

    The floor of the Assembly Hall is an ever-changing stage. Like characters in a grand production, components of all size and shapes make a spectacular entry, pl [...]

    Read more

  • Magnet system | A set of spares for the long journey

    In about five years, ITER will embark on a long journey through largely uncharted territory. Conditions will be harsh and—despite all the calculations, modellin [...]

    Read more

Of Interest

See archived entries

Jülich to develop plasma core measuring system

The CXRS diagnostic will help determine the composition and temperature of the plasma. The demanding conditions of the ITER vacuum vessel—temperatures exceeding 100 million degrees Celsius, plasma radiation, neutron flux, and electromagnetic forces—necessitate complex development work and testing. (Click to view larger version...)
The CXRS diagnostic will help determine the composition and temperature of the plasma. The demanding conditions of the ITER vacuum vessel—temperatures exceeding 100 million degrees Celsius, plasma radiation, neutron flux, and electromagnetic forces—necessitate complex development work and testing.
The German research institute Forschungszentrum Jülich has announced that it will lead a consortium of European partners to design a measuring system for ITER. The consortium has signed a Framework Partnership Agreement with the European Domestic Agency (F4E) to develop the ITER core plasma Charge Exchange Recombination Spectroscopy (CXRS) diagnostic.

This measuring system will help determine the composition and temperature of the plasma in the vacuum vessel. The Framework Partnership Agreement will run for four years with an F4E contribution of EUR 4.9 million.

Once designed by the consortium, the core plasma CXRS system will be procured by F4E and assembled into an ITER vacuum vessel port plug.

The CXRS diagnostic views a region of the ITER plasma illuminated by a high-energy beam of neutral hydrogen particles injected into the plasma by a companion device being constructed by ITER's Indian partners. Collisions with particles in the fusion plasma produce visible light whose wavelength and spatial distribution allow conclusions to be drawn on various properties of the plasma. The measurements provide information that is crucial for sustaining the fusion reaction.

The design of the CXRS diagnostic device is being performed by physicists and engineers from the Jülich Institute of Energy and Climate Research (IEK-4) and by their colleagues at Jülich's Central Institute of Engineering, Electronics and Analytics (ZEA-1) as well as by European partners: Karlsruhe Institute of Technology (KIT); universities of technology in Budapest (BME) and Eindhoven (TU/e); the Dutch Institute for Fundamental Energy Research (DIFFER); and CCFE in the UK. Contributing third parties include the Spanish CIEMAT centre and the Hungarian Wigner-RCP institute.

Read the full Press Release from the Forschungszentrum Jülich here.


return to the latest published articles