Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Fuelling fusion | The magic cocktail of deuterium and tritium

    Nuclear fusion in stars is easy: it just happens, because the immense gravity of a star easily overcomes the resistance of nuclei to come together and fuse. [...]

    Read more

  • 360° image of the week | The cryoplant

    Cryogenics play a central role in the ITER Tokamak: the machine's superconducting magnets (10,000 tonnes in total), the vacuum pumps, thermal shields and so [...]

    Read more

  • Central solenoid assembly | First sequences underway

    What does it take to assemble the magnet at the heart of ITER? Heavy lifting, unerring accuracy, and a human touch. The central solenoid will be assembled from [...]

    Read more

  • Assembly | The eyes of ITER

    Supervisors ensure compliance and completion as machine and plant assembly forges ahead. In Greek mythology, Argus was considered an ideal guardian because his [...]

    Read more

  • Component repairs | Removing, displacing and disassembling

    A good repair job starts with a cleared workbench, the right tools on hand and a strong vise. This axiom, true for odd jobs in a home workshop, is also true for [...]

    Read more

Of Interest

See archived entries

Jülich to develop plasma core measuring system

The CXRS diagnostic will help determine the composition and temperature of the plasma. The demanding conditions of the ITER vacuum vessel—temperatures exceeding 100 million degrees Celsius, plasma radiation, neutron flux, and electromagnetic forces—necessitate complex development work and testing. (Click to view larger version...)
The CXRS diagnostic will help determine the composition and temperature of the plasma. The demanding conditions of the ITER vacuum vessel—temperatures exceeding 100 million degrees Celsius, plasma radiation, neutron flux, and electromagnetic forces—necessitate complex development work and testing.
The German research institute Forschungszentrum Jülich has announced that it will lead a consortium of European partners to design a measuring system for ITER. The consortium has signed a Framework Partnership Agreement with the European Domestic Agency (F4E) to develop the ITER core plasma Charge Exchange Recombination Spectroscopy (CXRS) diagnostic.

This measuring system will help determine the composition and temperature of the plasma in the vacuum vessel. The Framework Partnership Agreement will run for four years with an F4E contribution of EUR 4.9 million.

Once designed by the consortium, the core plasma CXRS system will be procured by F4E and assembled into an ITER vacuum vessel port plug.

The CXRS diagnostic views a region of the ITER plasma illuminated by a high-energy beam of neutral hydrogen particles injected into the plasma by a companion device being constructed by ITER's Indian partners. Collisions with particles in the fusion plasma produce visible light whose wavelength and spatial distribution allow conclusions to be drawn on various properties of the plasma. The measurements provide information that is crucial for sustaining the fusion reaction.

The design of the CXRS diagnostic device is being performed by physicists and engineers from the Jülich Institute of Energy and Climate Research (IEK-4) and by their colleagues at Jülich's Central Institute of Engineering, Electronics and Analytics (ZEA-1) as well as by European partners: Karlsruhe Institute of Technology (KIT); universities of technology in Budapest (BME) and Eindhoven (TU/e); the Dutch Institute for Fundamental Energy Research (DIFFER); and CCFE in the UK. Contributing third parties include the Spanish CIEMAT centre and the Hungarian Wigner-RCP institute.

Read the full Press Release from the Forschungszentrum Jülich here.


return to the latest published articles