Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Real-time collaboration delivers for fusion computing

    A key computing system for ITER is now being trialled at the European tokamak JET, following collaboration betweenteams at the UK's Culham Centre for Fusion Ene [...]

    Read more

  • The balance of power

    It comes as no surprise that the French railway operator SNCF is the largest consumer of electricity in the country—it takes a lot of megawatts to power 500 sup [...]

    Read more

  • "Dummy" winding takes shape

    As orange lights flash and machines softly hum, layer one of a 'dummy' pancake winding (the building block of a poloidal field coil) is taking shape on the wind [...]

    Read more

  • As big (and heavy) as a whale

    It was pouring when the two 35-metre-long quench tanks were delivered to the ITER site at 2:12 a.m. on Thursday 24 November. And it was still raining heavily on [...]

    Read more

  • A passage to India

    108 days, 10,200 kilometres, 16 countries, and only two flat tires. These are the remarkable statistics of a no-less-remarkable journey: a father and son who tr [...]

    Read more

Of Interest

See archived articles

Jülich to develop plasma core measuring system

-Forschungszentrum Juelich

The CXRS diagnostic will help determine the composition and temperature of the plasma. The demanding conditions of the ITER vacuum vessel—temperatures exceeding 100 million degrees Celsius, plasma radiation, neutron flux, and electromagnetic forces—necessitate complex development work and testing. (Click to view larger version...)
The CXRS diagnostic will help determine the composition and temperature of the plasma. The demanding conditions of the ITER vacuum vessel—temperatures exceeding 100 million degrees Celsius, plasma radiation, neutron flux, and electromagnetic forces—necessitate complex development work and testing.
The German research institute Forschungszentrum Jülich has announced that it will lead a consortium of European partners to design a measuring system for ITER. The consortium has signed a Framework Partnership Agreement with the European Domestic Agency (F4E) to develop the ITER core plasma Charge Exchange Recombination Spectroscopy (CXRS) diagnostic.

This measuring system will help determine the composition and temperature of the plasma in the vacuum vessel. The Framework Partnership Agreement will run for four years with an F4E contribution of EUR 4.9 million.

Once designed by the consortium, the core plasma CXRS system will be procured by F4E and assembled into an ITER vacuum vessel port plug.

The CXRS diagnostic views a region of the ITER plasma illuminated by a high-energy beam of neutral hydrogen particles injected into the plasma by a companion device being constructed by ITER's Indian partners. Collisions with particles in the fusion plasma produce visible light whose wavelength and spatial distribution allow conclusions to be drawn on various properties of the plasma. The measurements provide information that is crucial for sustaining the fusion reaction.

The design of the CXRS diagnostic device is being performed by physicists and engineers from the Jülich Institute of Energy and Climate Research (IEK-4) and by their colleagues at Jülich's Central Institute of Engineering, Electronics and Analytics (ZEA-1) as well as by European partners: Karlsruhe Institute of Technology (KIT); universities of technology in Budapest (BME) and Eindhoven (TU/e); the Dutch Institute for Fundamental Energy Research (DIFFER); and CCFE in the UK. Contributing third parties include the Spanish CIEMAT centre and the Hungarian Wigner-RCP institute.

Read the full Press Release from the Forschungszentrum Jülich here.


return to the latest published articles