Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Image of the Week | Hard work deserves an outdoor buffet

    A start-of-summer event was held on Friday 21 June for the ITER community—an occasion to celebrate the everyday commitment of staff and contractors alike, acros [...]

    Read more

  • Poloidal field coils | Reflecting on a unique industrial achievement

    They had worked together for 10 years. And on Thursday 20 June, they gathered one last time to reflect on what they had accomplished. Director-General Pietro Ba [...]

    Read more

  • 34th ITER Council | Updated baseline presented

    Nearly 100 people met for two days last week for the 34th Meeting of the ITER Council. The meeting was an important one, as the ITER Organization and the D [...]

    Read more

  • Cryopumps | First unit reaches ITER

    The ITER vacuum team, the European Domestic Agency Fusion for Energy, Research Instruments (RI), and the ITER Director-General were all excited to welcome the d [...]

    Read more

  • Tritium Plant Summit | A shared vision to prepare for delivery

    A summit organized at ITER Headquarters from 3 to 6 June brought together the international teams that will deliver the sub-systems of the ITER Tritium Plant. I [...]

    Read more

Of Interest

See archived entries

PPPL microwaves fight instabilities in DIII-D, KSTAR

A look into the microwave launcher showing the steering mirrors that guide the beam into the plasma. Photo: PPPL (Click to view larger version...)
A look into the microwave launcher showing the steering mirrors that guide the beam into the plasma. Photo: PPPL
PPPL collaborations have been instrumental in developing a system to suppress instabilities that could degrade the performance of a fusion plasma. PPPL has built and installed such a system on the DIII-D Tokamak that General Atomics operates for the US Department of Energy in San Diego and on the Korea Superconducting Tokamak Advanced Research (KSTAR) facility in South Korea—and now is revising the KSTAR design to operate during extended plasma experiments. Suppressing instabilities will be vital for future fusion facilities such as ITER.

The system developed on DIII-D and then installed on KSTAR aims high-power microwave beams at instabilities called islands and generates electrical current that eliminates the islands. The process links software-controlled mirrors to detection equipment, creating a system that can respond to instabilities and suppress them within milliseconds. "It works like a scalpel that removes the island," said PPPL physicist Raffi Nazikian, the head of the Laboratory's collaboration with DIII-D. 

Revising the unit on KSTAR calls for adding a water-cooling system to keep the mirrors that direct the high-power microwaves into the plasma from overheating. KSTAR's superconducting magnets can confine the plasma for up to 300 seconds during long-pulse experiments that reach temperatures far hotter than the 15-million degree Celsius core of the sun. "Once you get beyond 10 seconds you have to remove the heat as you put it in," said PPPL engineer Robert Ellis, who designed the copper and copper-and-steel mirrors.

Ellis was part of a team of PPPL physicists and engineers who worked closely with their counterparts at General Atomics to develop the original system on DIII-D. PPPL Physicist Egemen Kolemen, an expert in plasma control, created much of the software that automatically steers the mirrors and directs the microwave beams to their target. PPPL engineer Alexander Nagy also shared responsibility for the system, providing onsite support in San Diego.

The microwave beams not only remove instabilities, but enable researchers to mimic the way that the alpha particles produced by fusion reactions will heat the plasma in ITER. While current heating methods typically heat the ions in plasma, these microwave beams act on the electrons instead. This process parallels what will happen in ITER. "By putting microwave power into the electrons," Nazikian said, "we can experimentally simulate and study how a fusion plasma will be heated in ITER."

The revised KSTAR unit will extend such research to long-pulse plasma experiments when work on the water-cooled mirrors is completed later this year.

See the original article on the PPPL website.


return to the latest published articles