Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Technology | ITER-like disruption mitigation at KSTAR

    Two weeks ago at the Korean tokamak KSTAR, the technology chosen for disruption mitigation at ITER—shattered pellet injection—was tested for the first time in a [...]

    Read more

  • Cooling system | From river to droplets and mist

    A subterranean river runs through the ITER installation. Rushing through 60 kilometres of piping, passing through dozens of pumps, filters and heat exchangers a [...]

    Read more

  • Image of the week | How quickly it goes!

    There are many challenges in communicating ITER and one is to keep pace (from a visual point of view) with the progress of the Tokamak Building. Since this pi [...]

    Read more

  • FEC2020 | Seeking sponsors for 28th IAEA Fusion Energy Conference

    For only the third time since 1961, the International Atomic Energy Agency's Fusion Energy Conference will be taking place in France—hosted jointly by the Frenc [...]

    Read more

  • Nuclear safety | Under constant scrutiny

    Because one of the elements involved in the fusion reaction is the radioactive isotope tritium, and because the hydrogen fusion reaction itself generates a high [...]

    Read more

Of Interest

See archived entries

The bleeding "edge" of fusion research

Oak Ridge National Laboratory

Part of a visualization of turbulence spreading inward from the plasma edge. (Click to view larger version...)
Part of a visualization of turbulence spreading inward from the plasma edge.
Few problems have vexed physicists like fusion, the process by which stars fuel themselves and by which researchers on Earth hope to create the energy source of the future.

By heating the hydrogen isotopes tritium and deuterium to more than five times the temperature of the Sun's core, scientists create a reaction that could eventually produce electricity. Turns out, however, that confining the engine of a star to a manmade vessel and using it to produce energy is tricky business.

Big problems, such as this one, require big solutions. Luckily, few solutions are bigger than Titan, the Department of Energy's flagship Cray XK7 supercomputer managed by the Oak Ridge Leadership Computing Facility.

Titan allows advanced scientific applications to reach unprecedented speeds, enabling scientific breakthroughs faster than ever with only a marginal increase in power consumption. This unique marriage of number-crunching hardware enables Titan, located at Oak Ridge National Laboratory (ORNL), to reach a peak performance of 27 petaflops to claim the title of the world's fastest computer dedicated solely to scientific research.

See the original article and the computer visualization on the Oak Ridge Leadership Computing Facility website.


return to the latest published articles