Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Bookmark | The Future of Fusion Energy

    To write about fusion is to walk a fine line between the temptation of lyricism and the arid demands of scientific accuracy. Whereas the general media tends to [...]

    Read more

  • Image of the week |The shine of silver

    All ITER components are precious. But some look more precious than others. A vacuum vessel sector, a toroidal field coil, a cryopump, or a divertor cassette a [...]

    Read more

  • JT-60SA | "ITER satellite" to begin operating next year

    In a major assembly milestone for the JT-60SA tokamak, the 12-metre-tall central solenoid was successfully installed by overhead crane on 8 May. Japanese televi [...]

    Read more

  • ITER physics school | Ten years of lectures now available

    The lectures from ten ITER International Schools held since 2007 have been collected and are now available through a dedicated webpage on the ITER website. I [...]

    Read more

  • "Vigyan Samagam" | India showcases megascience

    From micro to macro—specifically, from the India-based Neutrino Observatory (INO) that will study neutrino mass ordering events lasting 10-43 seconds, to the La [...]

    Read more

Of Interest

See archived entries

The bleeding "edge" of fusion research

Oak Ridge National Laboratory

Part of a visualization of turbulence spreading inward from the plasma edge. (Click to view larger version...)
Part of a visualization of turbulence spreading inward from the plasma edge.
Few problems have vexed physicists like fusion, the process by which stars fuel themselves and by which researchers on Earth hope to create the energy source of the future.

By heating the hydrogen isotopes tritium and deuterium to more than five times the temperature of the Sun's core, scientists create a reaction that could eventually produce electricity. Turns out, however, that confining the engine of a star to a manmade vessel and using it to produce energy is tricky business.

Big problems, such as this one, require big solutions. Luckily, few solutions are bigger than Titan, the Department of Energy's flagship Cray XK7 supercomputer managed by the Oak Ridge Leadership Computing Facility.

Titan allows advanced scientific applications to reach unprecedented speeds, enabling scientific breakthroughs faster than ever with only a marginal increase in power consumption. This unique marriage of number-crunching hardware enables Titan, located at Oak Ridge National Laboratory (ORNL), to reach a peak performance of 27 petaflops to claim the title of the world's fastest computer dedicated solely to scientific research.

See the original article and the computer visualization on the Oak Ridge Leadership Computing Facility website.


return to the latest published articles