Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Neighbours | In goes the antenna

    Just a short distance from the ITER site, the Institute for Magnetic Fusion Research (IRFM) is modifying the Tore Supra plasma facility which, once transformed, [...]

    Read more

  • Remote handling | Off-site test facility for design evaluation

    Through a technical collaboration established between the ITER Organization and the UK Atomic Energy Authority (UKAEA) in 2017, the UKAEA's centre for Remote Ap [...]

    Read more

  • Poloidal field coils | A tailor-made ring

    They work like tailors, carefully taking measurements and cutting immaculate fabric with large pairs of scissors. But they're not making a white three-piece sui [...]

    Read more

  • Fusion world | Record results at KSTAR

    Experiments in the Korean tokamakKSTAR in 2017 achieved record-length periods of ELM suppression by the application of three-dimensional magnetic fields with in [...]

    Read more

  • JT-60 SA| Cryostat ready for Europe-Japan tokamak

    The cryostat vessel body of the JT-60SA tokamakhas been successfully manufactured and pre-assembled at a factory in Spain, and will soon be transferred to the J [...]

    Read more

Of Interest

See archived articles

The bleeding "edge" of fusion research

Oak Ridge National Laboratory

Part of a visualization of turbulence spreading inward from the plasma edge. (Click to view larger version...)
Part of a visualization of turbulence spreading inward from the plasma edge.
Few problems have vexed physicists like fusion, the process by which stars fuel themselves and by which researchers on Earth hope to create the energy source of the future.

By heating the hydrogen isotopes tritium and deuterium to more than five times the temperature of the Sun's core, scientists create a reaction that could eventually produce electricity. Turns out, however, that confining the engine of a star to a manmade vessel and using it to produce energy is tricky business.

Big problems, such as this one, require big solutions. Luckily, few solutions are bigger than Titan, the Department of Energy's flagship Cray XK7 supercomputer managed by the Oak Ridge Leadership Computing Facility.

Titan allows advanced scientific applications to reach unprecedented speeds, enabling scientific breakthroughs faster than ever with only a marginal increase in power consumption. This unique marriage of number-crunching hardware enables Titan, located at Oak Ridge National Laboratory (ORNL), to reach a peak performance of 27 petaflops to claim the title of the world's fastest computer dedicated solely to scientific research.

See the original article and the computer visualization on the Oak Ridge Leadership Computing Facility website.


return to the latest published articles