Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cryoplant | Filled from floor to ceiling

    The ITER cryoplant used to be a vast echoey chamber with 5,400 m² of interior space divided into two areas; now, it is filled from floor to ceiling with industr [...]

    Read more

  • Cryostat | Adjusting, welding, testing ...

    The assembly of the ITER cryostat—the stainless steel "thermos" that insulates the ultra-cold superconducting magnets from the environment—is progress [...]

    Read more

  • Tokamak Building | Full steam ahead

    In this central arena of the construction site, construction teams are active three shifts a day—two full work shifts and a third, at night, dedicated to moving [...]

    Read more

  • Poloidal field coils | Turning tables and hot resin

    One of only two manufacturing facilities located on the ITER site, the Poloidal Field Coils Winding Facility was constructed by Europe to house the winding, imp [...]

    Read more

  • Assembly Hall | One giant standing

    Two identical handling tools in the Assembly Hall will play a critical role in preparing ITER's nine vacuum vessel sectors for their final journey: transport by [...]

    Read more

Of Interest

See archived entries

European industry to supply divertor remote handling system

A 3D image of the remote handling system for the ITER divertor. Credit: Assystem (Click to view larger version...)
A 3D image of the remote handling system for the ITER divertor. Credit: Assystem
The long concept preparation phase for ITER's high-tech divertor remote handling system has come to an end and industry is about to take over, thanks to a seven-year, multimillion-euro contact signed between the European Domestic Agency for ITER and Assystem, a leading consultancy firm in engineering and innovation.

Assystem and its partners will have the responsibility for the design, manufacture, delivery, installation, commissioning and final acceptance tests of the remote handling systems that will be charged with the remote replacement of ITER's 54 divertor cassettes. Running toroidally along the bottom of the vacuum vessel the ITER divertor acts as the Tokamak's exhaust system, extracting helium ash from the burning plasma. Due to the tremendous heat loads and magnetic forces that divertor components will face, replacement is planned three times over the course of the machine's lifetime.

The equipment of the Divertor Remote Handling System will allow for the safe and reliable positioning, as well as extraction, of the 54 removable cassettes. Due to severe space constraints in that part of the vacuum vessel, the remote handling system will have to manoeuvre its heavy loads with extreme precision—respecting positioning tolerances of only a few millimetres at certain points along the transport trajectory.

The ITER team and a number of European institutions have been working on the development of the ITER divertor maintenance concept for more than 15 years. Some of the most challenging steps within the process have been demonstrated at full scale, first within the Divertor Test Platform (DTP) constructed in Brasimone, Italy, and more recently within the DTP2 (Divertor Test Platform 2) located in Tampere, Finland (see video, below).

"This is a very important milestone for the ITER Divertor Remote Handling System," says Jim Palmer, of ITER's Remote Handling Section. "It has been a long road of design, R&D and prototyping to reach this point, and now we are really looking forward to getting down to the detailed design."

Assystem leads a team of well-known experts in the remote handling field, comprising the Culham Centre for Fusion Energy, CCFE (UK); Soil Machine Dynamics Ltd, SMD (UK); VTT Technical Research Centre (Finland); and Tampere University of Technology, TUT (Finland).

Read the original story on the European Domestic Agency website.

Watch a video on ITER divertor remote handling here.


return to the latest published articles