Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • ITER DNA | A "case" study...

    In December last year, and again this year in early May, pre-welding fitting tests demonstrated that steel components as tall as a four-storey building (and wei [...]

    Read more

  • First plasma| Temporary in-vessel protection

    The vacuum vessel, the operating theatre of the ITER machine, needs to be protected against possible damage from the hot plasma at any given time during its ope [...]

    Read more

  • Divertor cassettes | Successful prototypes open way to series

    Before embarking on the fabrication of the 54 complex steel structures that will form a ring at the bottom of the ITER machine—the divertor cassettes—the Europe [...]

    Read more

  • Images of the week | Titan tool 90 percent complete

    Towering 22 metres above ground and weighing approximately 800 tonnes, the twin sector sub-assembly tools (SSAT) are formidable handling machines that will be u [...]

    Read more

  • Video | How does the ITER cryoplant work?

    Cold is essential to ITER—10,000 tonnes of superconducting magnets, the thermal shield that surrounds the machine, the cryopumps that achieve the high vacuum in [...]

    Read more

Of Interest

See archived articles

A divertor test bed next door

Sabina Griffith

 (Click to view larger version...)
It must have felt almost like coming home for Jérôme Bucalossi as he walked down the stairs of the ITER amphitheatre on his way to the speaker's podium. Many of his former colleagues from the French Alternative Energies and Atomic Energy Commission (CEA) had come to welcome the head of the WEST project to present the project that aims to support the ITER divertor strategy.

WEST, the acronym for "Tungsten (W) Environment in Steady-State Tokamak," was officially launched in March 2013 to contribute key insight into the steady state operation of a tungsten divertor and its impact on plasma performance. The divertor—a crucial tokamak component—must handle the highest thermal and particle loads in the vessel with up to 20 MW/m2. The decision to equip ITER with a full tungsten divertor brings new challenges both in terms of industrial series production for the actively-cooled tungsten components and in terms of operation. The WEST project was thus launched to address these issues and to minimize associated risks.

WEST is a modification of the French Tore Supra tokamak, which will transform it into an X-point divertor device. Tore Supra is the only European tokamak combining superconducting toroidal magnetic field coils, actively water-cooled plasma-facing components, and adequate additional heating systems. Thus it will be capable of testing the technologies used for the ITER high heat flux components in relevant plasma conditions. "With WEST we will be able to mimic the particle fluence of ITER nominal pulses in a few days of operation," Bucalossi said.

An integral part of the international fusion community, the WEST platform will be run as a user facility—open to all the ITER partners. The research program was only recently presented at a dedicated workshop in Aix-en-Provence.

A first short pulse ( ~10 sec) experiment is scheduled for early 2016 with a few ITER-like actively cooled sectors complemented by inertial cooled sectors made of graphite with W coating. Two years later, the next experimental campaign foresees an actively cooled divertor equipped with 456 ITER-like plasma-facing units. This setup, Bucalossi stressed, will then allow "experiments à la carte" for the study of material grades, geometry and the behavior of damaged components.


return to the latest published articles