Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Tokamak Complex | Interior design

    Fresh from the offices of the Design& Construction Integration Division, this cutaway drawing peels back the walls to reveal theinterior layout of the Tokam [...]

    Read more

  • Fusion world | A visit to Kyoto's heliotron

    At the Institute of Advanced Energy, Kyoto University, researchers have been exploring the heliotron concept of magnetic fusion device for more than half a cent [...]

    Read more

  • Construction site | The lights of autumn

    Summer is over in Provence and the beautiful autumn light is back, revealing every detail of the landscape... and of the ongoing works on the ITER construction [...]

    Read more

  • Cryostat | A true sense of size

    Just like a thermos provides the insulation to keep your coffee warm—or your water cold—the ITER cryostat raises a barrier around the superconducting magnets th [...]

    Read more

  • Image of the week | ITER at 10

    The ITER Organization was established ten years ago, on 24 October 2017. A week ahead of the official celebration, part of the ITER staff, now numbering 800, ga [...]

    Read more

Of Interest

See archived articles

Experts gather in China to review key power supply components

Chunsu Na, Coil Power Supply Section

 (Click to view larger version...)
An important milestone was reached this summer for ITER's power supply components, with the successful completion of the Final Design Review for ITER's reactive power compensation and harmonic filtering system.

This unique system, responsible for fast-acting reactive power compensation on the high-voltage electricity transmission network, will stabilize the power grid and provide the required quality of electrical power to operate ITER. Its main role will be to regulate the reactive power flow and control the voltage variation and current/voltage harmonic distortion of the 66 kV busbars in ITER's pulsed power electric network.

One of the largest reactive power compensation and harmonic filtering systems in the world, it will include three identical 250 Mvar units (at 66 kV and 50 Hz). The Chinese company RXPE (Rongxin Power Electronic) was awarded the procurement contract in December 2011, after the Chinese Domestic Agency concluded a Procurement Arrangement with the ITER Organization in April of the same year. The Procurement Arrangement covers system design, manufacturing, factory tests, inspections, delivery, installation, assembly and site tests.

 (Click to view larger version...)
At the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) in Hefei, an 80 Mvar test platform has been installed that will also serve to test Chinese-manufactured AC/DC converters. A type test of the single-phase thyristor valve—one of the main components of the reactive power compensation and harmonic filtering system—has been carried out to verify performance in accordance with the specifications of the Procurement Arrangement.

During the Final Design Review held in Beijing at the Chinese Domestic Agency from 30 July to 1 August, interface requirements were carefully checked and clarified, key electrical design parameters were evaluated, Factory Acceptance Tests (FAT) and Site Acceptance Tests (SAT) were fully discussed, and site installation procedures and tooling were investigated.

The ITER Organization technical team, including external experts, reviewed all of the documentation in advance before its official submission to make sure that the key points of the design were presented clearly and precisely.

"Thanks to the great collaborative effort between the ITER Organization and Chinese Domestic Agency teams, we have successfully finished the Final Design Review," said the review Chair Ivone Benfatto, who leads the Electrical Engineering Division at ITER. "We appreciate your effort and the extensive preparations for the Final Design Review. The work is challenging, but I believe that if we combine our collective wisdom we can achieve our common goal."


return to the latest published articles