Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Cryopumps | First unit reaches ITER

    The ITER vacuum team, the European Domestic Agency Fusion for Energy, Research Instruments (RI), and the ITER Director-General were all excited to welcome the d [...]

    Read more

  • Tritium Plant Summit | A shared vision to prepare for delivery

    A summit organized at ITER Headquarters from 3 to 6 June brought together the international teams that will deliver the sub-systems of the ITER Tritium Plant. I [...]

    Read more

  • Image of the week | ITER Robots goes international

    Thinking outside the box, teamwork and ingenuity are the ingredients that make for a successful robotics engineer—all qualities that are cultivated by participa [...]

    Read more

  • In memoriam | Physicist Michael Lehnen

    The ITER Organization mourns the passing of an outstanding physicist and beloved colleague. It is with the deepest sadness and a profound sense of loss that we [...]

    Read more

  • 34th ITER Council | Updated baseline presented

    Nearly 100 people met for two days this week for the 34th Meeting of the ITER Council. The meeting was an important one, as the ITER Organization and the D [...]

    Read more

Of Interest

See archived entries

Hi-tech Brillo pads answering a hot fusion problem

When a CCFE engineer Tom Barrett and colleagues embarked on a European-wide project to design a key component to protect fusion reactors from thermal damage, they never expected their solution could come in the form of a household object.

The component in question is the exhaust system of the 'DEMO' prototype power plant. Known as the divertor, it is a trench where the hot fusion plasma will be deliberately deposited. Doing so enables heat to be conducted away while controlling impurities, and is a way of managing the ejection of power and helium waste.

Divertor target mock-ups manufactured at CCFE, in collaboration with KIT in Germany. © CCFE (Click to view larger version...)
Divertor target mock-ups manufactured at CCFE, in collaboration with KIT in Germany. © CCFE
The divertor surface will be dotted with thousands of small tungsten blocks, forming the divertor targets. Millimetres below these targets, a water coolant flow removes the waste heat and regulates the divertor's temperature, and so the structural integrity of these components is critical. Damage to the coolant pipe will mean the coolant leaks out and the whole reactor has to shut down for costly repairs. So Tom and his colleagues' job is to find a way of separating the very hot tungsten (1,500 degrees C) from the not-quite-so-hot cooling water (a mere 200 degrees C). One idea is to focus on the so-called 'interlayer' between the tungsten armour and cooling structure.

The Brillo pad team. © CCFE (Click to view larger version...)
The Brillo pad team. © CCFE
"We think the layer between the two surfaces has to be spongey, but also act as a thermal barrier as well as survive the high heat flux," Tom explains. "From our analysis it looks like a good material for the job is a kind of felt made from copper — a bit like a Brillo pad you'd use to clean your dishes."

Read the full story on the CCFE website.


return to the latest published articles