Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • The making of a ring coil—a photo story

    From one end to the other of the on-site manufacturing facility for poloidal field coils, the different production stations are now clearly delimited, with tool [...]

    Read more

  • An unexpected fusion spinoff: aircraft carrier catapult

    The US company General Atomics is fabricating the 'beating heart of ITER,' an electromagnet called the central solenoid that is so large and powerful, that its [...]

    Read more

  • First steps towards "energizing"

    It takes more than the flipping of a switch to connect the ITER site to the French national grid. The operation, called a 'first energizing,' is a complex, step [...]

    Read more

  • The bioshield rises

    The bioshield structure is rising at the heart of the Tokamak Building. The last plot of the B1 level was poured last week; about half of the first ground level [...]

    Read more

  • Barcelona Supercomputer Center and ITER strengthen ties

    In a Memorandum of Understanding signed on 12 January 2017, the ITER Organization and the Barcelona Supercomputing Center (BSC) in Spain have agreed 'to promote [...]

    Read more

Of Interest

See archived articles

Europe completes niobium-tin strand production

The final inspection on the completed wire at an eddy current test station at Bruker EAS, in Germany. (Photo courtesy of Bruker EAS GmbH.) (Click to view larger version...)
The final inspection on the completed wire at an eddy current test station at Bruker EAS, in Germany. (Photo courtesy of Bruker EAS GmbH.)
The European Domestic Agency has announced the realization of an important procurement milestone for ITER: the completion of Europe's share of the niobium-tin (Nb3Sn) superconducting strand required for the fabrication of ITER's powerful toroidal field coils.

Approximately 380 tons of Nb3Sn superconducting strand, or "wire," is required for ITER's toroidal field magnets. The wire is the key component that will allow the toroidal field magnets to reach 12 T and contribute to the confinement of the plasma. Each strand is less than 1 mm in diameter, and yet can sustain very high current when cooled down to "superconducting" temperatures (-269 degrees Celsius).

The European share of toroidal field strand procurement amounts to 97 tons (20.2 percent of toroidal field strands). Two suppliers—Bruker European Advanced Superconductors and Oxford Superconducting Technology—carried out the fabrication. The superconducting wire was produced, tested, approved by the European Domestic Agency, Fusion for Energy, and finally cleared by the ITER Organization.

Europe is the third ITER Domestic Agency, after Korea and Japan, to complete toroidal field strand production and all related ITER Organization control points.

The more than 1,500 production units produced by the two manufacturers will be used to fabricate the cables for the European toroidal field coil cable-in-conduit conductor (CICC) lengths.

Fifty percent of conductor unit lengths have already been produced and delivered to ASG Superconductors SpA, the Italian facility in charge of manufacturing the toroidal field coil winding packs. The remaining conductor lengths will be finalized in 2015.


return to the latest published articles