Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Diagnostics | Measuring the behaviour of fast ions in the plasma

    A diagnostic probe, called the "lost alpha monitor," is being carefully designed to measure the behaviour of escaping ions. The lost alpha monitor wil [...]

    Read more

  • Fusion fashion | A collision of worlds

    As Gabriela Hearst, the Creative Director of the fashion brand Chloé, is quick to tell you, she is very excited about hydrogen fusion. She had read about ITER a [...]

    Read more

  • Manufacturing | Cold valve boxes for the ITER cryopumps

    Eight sophisticated 'cold valve boxes' will regulate the forced flow of supercritical helium to the eight cryopumps of the ITER vacuum system. European contract [...]

    Read more

  • Fusion world | A helium campaign kicks off at JET

    After achieving record-breaking results on the Joint European Torus during 2021 experiments with the high-performance fuel mix of deuterium and tritium, EUROfus [...]

    Read more

  • Coil winding table | Seven years of faithful service

    In November 2015, workers from the European contractor Sea Alp Engineering, an Italian company based in Turin, began installing a large circular structure at th [...]

    Read more

Of Interest

See archived entries

Russia completes superconducting strand procurement

In the last six years, the Chepetsk Mechanical Plant has manufactured approximately 100 tonnes of niobium-tin (Nb3Sn) strand for ITER's toroidal field conductor and 125 tonnes of niobium-titanium (NbTi) strand for the poloidal field conductor. (Click to view larger version...)
In the last six years, the Chepetsk Mechanical Plant has manufactured approximately 100 tonnes of niobium-tin (Nb3Sn) strand for ITER's toroidal field conductor and 125 tonnes of niobium-titanium (NbTi) strand for the poloidal field conductor.
The last batch of Russian-produced superconducting strands for the ITER magnet system was shipped for cabling from the Chepetsk Mechanical Plant (Udmurtia) to JSC VNIIKP (Podolsk) on 3 December.

In the last six years, the Chepetsk Mechanical Plant has manufactured approximately 100 tonnes of niobium-tin (Nb3Sn) strand for ITER's toroidal field conductor and 125 tonnes of niobium-titanium (NbTi) strand for the poloidal field conductor.

A press release released for the event by the Russian Domestic Agency celebrated the "revival of the country's industrial capacity" in the production of superconducting strands due to participation in ITER. Superconducting strands for ITER are unique composite items consisting of more than 10,000 fine (2-6 microns) superconducting filaments (for reference, the thickness of a human hair is 40 to 110 microns). The superconductor manufacturing line in Udmurtia was created and equipped almost from scratch. In the course of developing the production process, the Chepetsk Mechanical Plant solved many technological and organizational issues.

Manufacturing superconducting strand for ITER involves a series of complex operations (assembly, pressing, drawing, rolling, outgassing, purification, etc.) that require absolute accuracy and compliance with technological requirements. From raw materials to the final product, the overall process lasts about nine months.

Read the press release from the Russian Domestic Agency in English and Russian.


return to the latest published articles