Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Neighbours | In goes the antenna

    Just a short distance from the ITER site, the Institute for Magnetic Fusion Research (IRFM) is modifying the Tore Supra plasma facility which, once transformed, [...]

    Read more

  • Remote handling | Off-site test facility for design evaluation

    Through a technical collaboration established between the ITER Organization and the UK Atomic Energy Authority (UKAEA) in 2017, the UKAEA's centre for Remote Ap [...]

    Read more

  • Poloidal field coils | A tailor-made ring

    They work like tailors, carefully taking measurements and cutting immaculate fabric with large pairs of scissors. But they're not making a white three-piece sui [...]

    Read more

  • Fusion world | Record results at KSTAR

    Experiments in the Korean tokamakKSTAR in 2017 achieved record-length periods of ELM suppression by the application of three-dimensional magnetic fields with in [...]

    Read more

  • JT-60 SA| Cryostat ready for Europe-Japan tokamak

    The cryostat vessel body of the JT-60SA tokamakhas been successfully manufactured and pre-assembled at a factory in Spain, and will soon be transferred to the J [...]

    Read more

Of Interest

See archived articles

Trying on the Tokamak crown

R.A.

On the very place where the ''B2 slab'' mockup was standing just a few months ago, a new Tokamak support system (''crown'') mockup has been under construction since the end of 2014. (Click to view larger version...)
On the very place where the ''B2 slab'' mockup was standing just a few months ago, a new Tokamak support system (''crown'') mockup has been under construction since the end of 2014.
A crown usually sits on a king's head, or on the top of prestigious buildings such as cathedrals or skyscrapers.

In ITER, the "crown" sits under the machine: it is the structural element that supports the combined mass of the cryostat, vacuum vessel, magnet system and thermal shield—in short, the support system for the 23,000-tonne machine. From both a structural and safety perspective, it is one of the most strategic parts of the installation.

Designing the ITER crown has proved an utterly complex and challenging task, involving several ITER departments as well as experts from the ITER European agency and its architect-engineer Engage.

The crown's complexity stems from the fact that the huge mass that it will support will not be an idle one. In the course of operation, the ITER Tokamak might slightly "up-lift", wobble, or shrink...causing considerable load transfers from the machine to the Tokamak Building basemat.

In late 2012, following some ten months of collaborative effort, the crown design was finalized: it will consist of a thick, circular concrete structure connected to the three-metre-thick bioshield by radial concrete walls. 

The mockup will consist in a 20° segment of the Tokamak crown, complete with a one-metre-thick radial wall and a three-metre-thick section of the bioshield. (Click to view larger version...)
The mockup will consist in a 20° segment of the Tokamak crown, complete with a one-metre-thick radial wall and a three-metre-thick section of the bioshield.
In order to allow for the smooth transfer of horizontal and rotational forces generated by the movement of the Tokamak, 18 spherical bearings acting like ball-and-socket joints will be installed between the concrete crown and the steel ring that acts as the interface with the cryostat.

Actual construction, however, is a long way from 3D design documents. When a structural element is as complex and as strategic as the ITER crown, an intermediate step is necessary to demonstrate constructability.

"Just like for the Tokamak Complex basemat slab, we need to be certain that the rebar principles we have opted for are constructible, and we need to qualify the bespoke concrete formula," explains ITER's Nuclear Buildings Section leader Laurent Patisson. "And there's only one way to do this: by trying it first on a real-size mockup."

On the very place where the "B2 slab" mockup was standing just a few months ago, a new mockup has been under construction since the end of 2014. When completed, the large structure will reproduce a 20° segment of the Tokamak crown, complete with a one-metre-thick radial wall and a three-metre-thick section of the bioshield.



return to the latest published articles