Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Test facility | How do electronics react to magnetic fields?

    A tokamak is basically a magnetic cage designed to confine, shape and control the super-hot plasmas that make fusion reactions possible. Inside the ITER Tokamak [...]

    Read more

  • ITER Robots | No two alike

    More than 500 students took part in the latest ITER Robots challenge. Working from the same instructions and technical specifications, they had worked in teams [...]

    Read more

  • Data archiving | Operating in quasi real time

    To accommodate the first real-time system integrated with the ITER control system, new components of the data archiving system have been deployed. Data archivi [...]

    Read more

  • Repairs | Setting the stage for a critical task

    Like in a game of musical chairs—albeit in slow motion and at a massive scale—components in the Assembly Hall are being transferred from one location to another [...]

    Read more

  • Image of the week | There is life on Planet ITER

    Dated April 2023, this new image of the ITER "planet" places the construction site squarely in the middle. One kilometre long, 400 metres wide, the IT [...]

    Read more

Of Interest

See archived entries

Trying on the Tokamak crown

On the very place where the ''B2 slab'' mockup was standing just a few months ago, a new Tokamak support system (''crown'') mockup has been under construction since the end of 2014. (Click to view larger version...)
On the very place where the ''B2 slab'' mockup was standing just a few months ago, a new Tokamak support system (''crown'') mockup has been under construction since the end of 2014.
A crown usually sits on a king's head, or on the top of prestigious buildings such as cathedrals or skyscrapers.

In ITER, the "crown" sits under the machine: it is the structural element that supports the combined mass of the cryostat, vacuum vessel, magnet system and thermal shield—in short, the support system for the 23,000-tonne machine. From both a structural and safety perspective, it is one of the most strategic parts of the installation.

Designing the ITER crown has proved an utterly complex and challenging task, involving several ITER departments as well as experts from the ITER European agency and its architect-engineer Engage.

The crown's complexity stems from the fact that the huge mass that it will support will not be an idle one. In the course of operation, the ITER Tokamak might slightly "up-lift", wobble, or shrink...causing considerable load transfers from the machine to the Tokamak Building basemat.

In late 2012, following some ten months of collaborative effort, the crown design was finalized: it will consist of a thick, circular concrete structure connected to the three-metre-thick bioshield by radial concrete walls. 

The mockup will consist in a 20° segment of the Tokamak crown, complete with a one-metre-thick radial wall and a three-metre-thick section of the bioshield. (Click to view larger version...)
The mockup will consist in a 20° segment of the Tokamak crown, complete with a one-metre-thick radial wall and a three-metre-thick section of the bioshield.
In order to allow for the smooth transfer of horizontal and rotational forces generated by the movement of the Tokamak, 18 spherical bearings acting like ball-and-socket joints will be installed between the concrete crown and the steel ring that acts as the interface with the cryostat.

Actual construction, however, is a long way from 3D design documents. When a structural element is as complex and as strategic as the ITER crown, an intermediate step is necessary to demonstrate constructability.

"Just like for the Tokamak Complex basemat slab, we need to be certain that the rebar principles we have opted for are constructible, and we need to qualify the bespoke concrete formula," explains ITER's Nuclear Buildings Section leader Laurent Patisson. "And there's only one way to do this: by trying it first on a real-size mockup."

On the very place where the "B2 slab" mockup was standing just a few months ago, a new mockup has been under construction since the end of 2014. When completed, the large structure will reproduce a 20° segment of the Tokamak crown, complete with a one-metre-thick radial wall and a three-metre-thick section of the bioshield.



return to the latest published articles