Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Upending tool | How to raise a sleeping giant

    How will the teams on site raise components weighing up to 450 tonnes from their horizontal delivery configurations to the upright orientation needed for assemb [...]

    Read more

  • SOFT 2018 | Conference opens in antique setting

    The ancient theatre of Taormina, in northeast Sicily, was built by the Romans on the foundations of an earlier Greek theatre. Still used to this day, the round [...]

    Read more

  • Former Council Chair Iotti | "Everyone should be congratulated!"

    For those who dreamed ITER in the 1990s, a visit to the construction site today is like stepping into a miracle. For Bob Iotti, who has been associated with the [...]

    Read more

  • In-vessel coils | Conductor qualified for manufacturing

    For magnet coils operating inside of the vacuum vessel, conventional insulation schemes are not an option. ITER will rely on mineral-insulated conductor technol [...]

    Read more

  • ITER Research Plan | The 400-page scenario

    The ITER Organization has just made publically available the most recent version of the ITER Research Plan, a 400-page document that describes the present visio [...]

    Read more

Of Interest

See archived entries

Wham!

Russell Eaton, Blanket Section

As part of an experimental program to test the robustness of various ceramic coatings, impact tests were carried out at TNO Structural Dynamics Laboratory in Delft, The Netherlands. Each pad was subjected 500 times to impacts of 2.5 MN, or the equivalent of 250 tonnes. Photo: TNO (Click to view larger version...)
As part of an experimental program to test the robustness of various ceramic coatings, impact tests were carried out at TNO Structural Dynamics Laboratory in Delft, The Netherlands. Each pad was subjected 500 times to impacts of 2.5 MN, or the equivalent of 250 tonnes. Photo: TNO
In ITER, 440 blanket modules—consisting each of a first wall panel and a heavy shield block—will be bolted to the vacuum vessel wall. A number of customizable components such as bolt housings and key pads will be machined prior to assembly to achieve rigorous alignment tolerances for each module.

The key pads on the shield blocks interface with the keys on the vacuum vessel through which poloidal loads are transmitted. The pads need to be electrically insulated to help control current paths and restrict electromagnetic loads during ITER operation. This insulation is provided through an alumina coating on specific surfaces of the pads.

Because this coating has the potential to degrade due to cyclic and impact loads caused by off-normal events such as disruptions, an experimental program to test the robustness of various ceramic coatings has been undertaken, which includes static testing at the NIKIET institute in Russia (Moscow) and dynamic impact testing at the TNO Structural Dynamics Laboratory in The Netherlands (Delft).

For impact testing, insulating coatings were applied to 110 mm circular pads through three different processes: plasma spray, high velocity oxygen fuel, and detonation coating. Samples were subjected to 500 impacts using a drop test tower that simulated different loading events (see video link below). During the impact, each pad was loaded up to 2.5 MN (the equivalent of 250 tonnes or about the maximum landing weight of a Boeing 747-300).

Continuous electrical monitoring of each sample's insulating coating showed that all samples successfully survived without an electrical breakdown. The next step will now be for the supplier to confirm the preferred approach to applying this coating and to complete a final qualification program.

The key pads are part of the Procurement Arrangement signed between the ITER Organization and the Russian Domestic Agency on Blanket Connections (December 2014).

Watch a short clip on the testing of key pads at the TNO Structural Dynamics Laboratory


return to the latest published articles