Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Fusion world | Innovative approaches and how ITER can help

    More than 30 private fusion companies from around the world attended ITER's inaugural Private Sector Fusion Workshop in May 2024. Four of them participated in a [...]

    Read more

  • Robert Aymar (1936-2024) | A vision turned into reality

    Robert Aymar, who played a key role in the development of fusion research in France and worldwide, and who headed the ITER project for 10 years (1993-2003) befo [...]

    Read more

  • The ITER community | United in a common goal

    Gathered on the ITER platform for a group photo (the first one since 2019, in pre-Covid times) the crowd looks impressive. Although several hundred strong, it r [...]

    Read more

  • Vacuum vessel | Europe completes first of five sectors

    The ITER assembly teams are gearing up to receive a 440-tonne machine component shipped from Italy—sector #5, the first of five vacuum vessel sectors expected f [...]

    Read more

  • SOFT 2024 | Dublin conference highlights progress and outstanding challenges

    Nestled in the residential suburb of Glasnevin, Dublin City University is a fairly young academic institution. When it opened its doors in 1980 it had just 200 [...]

    Read more

Of Interest

See archived entries

R&D work on the European gyrotron progresses

John Jelonnek, who is in charge of the KIT development program for the gyrotron, stands next to the 1 MW short-pulse prototype. (Click to view larger version...)
John Jelonnek, who is in charge of the KIT development program for the gyrotron, stands next to the 1 MW short-pulse prototype.
In ITER, energy-delivery devices called gyrotrons will contribute to heating the plasma to 150 million °C by generating high-frequency radio waves that transfer their energy to the plasma electrons. Four ITER Members—Europe, Japan, Russia and India—are responsible for delivering 24 ITER gyrotrons that will deliver a combined heating power of 24 MW.

The European Domestic Agency, with responsibility for six gyrotrons, is working with industry to develop the final design of the European gyrotron. Two industrial prototypes are currently in fabrication: a short-pulse gyrotron, capable of producing radio frequency of 1 MW for a few milliseconds; and a longer-pulse continuous-wave prototype, capable of producing a radiofrequency wave for several minutes.

In this development work, the European Domestic Agency is collaborating with the European Gyrotron Consortium—made up of the European fusion laboratories KIT (Germany), CRPP (Switzerland), HELLAS (Greece), and CNR (Italy), as well as the German USTUTT and Latvian ISSP as third parties—and Thales Electron Devices (France). 

In parallel, a mockup of the cavity (the gyrotron subassembly where the radio frequency waves at 170 GHz will be generated) is currently under development in collaboration with Thales Electron Devices, with testing carried out at the FE200 high heat flux test facility of AREVA (France).

The work on the gyrotron prototypes and cavity mockup achieved a first milestone during a recent pre-validation meeting held for the most critical components and the scientific design of the gyrotron. The meeting, which was held in April, gathered representatives from the European Domestic Agency, the European Gyrotron Consortium, Thales Electron Devices and the ITER Organization. All R&D activities were considered to be fully successful, with the short-pulse gyrotron noted as producing an exceptionally good output beam of more than 1 MW at the required 170 GHz frequency (up to 1.4 MW has been achieved) in a broad operational domain.

A second milestone—the full validation of the gyrotron technical design—is expected to be achieved during the first half of 2016.

Read the full story on the European Domestic Agency website.


return to the latest published articles