Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Image of the week | Tokamak-sur-mer

    At the height of the heat wave, in late June, surface temperature on the ITER worksite climbed to the 50 °C range. To continue work—and protect workers—a series [...]

    Read more

  • Space propulsion | Have fusion, will travel

    The idea of propelling rockets and spaceships using the power of the atom is nothing new: the Manhattan Project in the mid-1940s as well as countless endeavours [...]

    Read more

  • Cold fusion | End of story?

    Thirty years ago, two electrochemists at the University of Utah, Martin Fleischmann and Stanley Pons, created a sensation when they claimed they had achieved fu [...]

    Read more

  • Magnet feeders | Wave of deliveries ahead

    Several batches of magnet feeder components will arrive from China in September containing elements that need to be received, inspected and readied for installa [...]

    Read more

  • Tokamak cooling system procurement | Global team for better efficiency

    A unique work-sharing arrangement is expediting the design and fabrication of ITER's tokamak cooling water system and building the knowledge base that will be c [...]

    Read more

Of Interest

See archived entries

Preparing for the future at Tore Supra

Robert Arnoux

Fusion Science Master's students got their first taste of ''fusion for real'' at Tore Supra. (Click to view larger version...)
Fusion Science Master's students got their first taste of ''fusion for real'' at Tore Supra.
The challenges of fusion are many. One, however, holds the key to all others: the training of a new generation of fusion scientists who will take fusion to the threshold of industrial and commercial production.

Last month, as part of their Fusion Science Master's program, students from participating French universities got their first taste of "fusion for real" at Tore Supra. Practical fieldwork included measurements of the critical current inside a superconducting strand, studies of the confinement regime of ohmic plasmas and qualification of plasma-facing components.

For a student, it was a great time to be doing fieldwork at Tore Supra. The CEA-Euratom superconducting tokamak recently began experiments with the newest lower hybrid antenna, and achieved the coupling of 2.7 MW to a stationary plasma for 80 seconds—representing 223 MJ of energy injected.

Tore Supra's research on disruption mitigation is important for preparing ITER exploitation. (Click to view larger version...)
Tore Supra's research on disruption mitigation is important for preparing ITER exploitation.
Tore Supra also obtained important results in mitigating the effects of disruptions by way of massive gas injection. In present fusion devices, due to the relatively low energy stored in the plasma, disruptions are only a minor inconvenience. In ITER however, the energy in the plasma will be 100 times larger and disruptions could cause damage to the machine—hence the importance of Tore Supra's research in disruption mitigation for preparing ITER exploitation.


return to the latest published articles