Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Bookmark | The Future of Fusion Energy

    To write about fusion is to walk a fine line between the temptation of lyricism and the arid demands of scientific accuracy. Whereas the general media tends to [...]

    Read more

  • Image of the week |The shine of silver

    All ITER components are precious. But some look more precious than others. A vacuum vessel sector, a toroidal field coil, a cryopump, or a divertor cassette a [...]

    Read more

  • JT-60SA | "ITER satellite" to begin operating next year

    In a major assembly milestone for the JT-60SA tokamak, the 12-metre-tall central solenoid was successfully installed by overhead crane on 8 May. Japanese televi [...]

    Read more

  • ITER physics school | Ten years of lectures now available

    The lectures from ten ITER International Schools held since 2007 have been collected and are now available through a dedicated webpage on the ITER website. I [...]

    Read more

  • "Vigyan Samagam" | India showcases megascience

    From micro to macro—specifically, from the India-based Neutrino Observatory (INO) that will study neutrino mass ordering events lasting 10-43 seconds, to the La [...]

    Read more

Of Interest

See archived entries

Preparing for the future at Tore Supra

Robert Arnoux

Fusion Science Master's students got their first taste of ''fusion for real'' at Tore Supra. (Click to view larger version...)
Fusion Science Master's students got their first taste of ''fusion for real'' at Tore Supra.
The challenges of fusion are many. One, however, holds the key to all others: the training of a new generation of fusion scientists who will take fusion to the threshold of industrial and commercial production.

Last month, as part of their Fusion Science Master's program, students from participating French universities got their first taste of "fusion for real" at Tore Supra. Practical fieldwork included measurements of the critical current inside a superconducting strand, studies of the confinement regime of ohmic plasmas and qualification of plasma-facing components.

For a student, it was a great time to be doing fieldwork at Tore Supra. The CEA-Euratom superconducting tokamak recently began experiments with the newest lower hybrid antenna, and achieved the coupling of 2.7 MW to a stationary plasma for 80 seconds—representing 223 MJ of energy injected.

Tore Supra's research on disruption mitigation is important for preparing ITER exploitation. (Click to view larger version...)
Tore Supra's research on disruption mitigation is important for preparing ITER exploitation.
Tore Supra also obtained important results in mitigating the effects of disruptions by way of massive gas injection. In present fusion devices, due to the relatively low energy stored in the plasma, disruptions are only a minor inconvenience. In ITER however, the energy in the plasma will be 100 times larger and disruptions could cause damage to the machine—hence the importance of Tore Supra's research in disruption mitigation for preparing ITER exploitation.


return to the latest published articles