Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Local partners | A celebration for ITER's "vital artery"

    ITER is made possible through the work of thousands of scientists, engineers, workers of all trades and industries across the globe. It is also made possible by [...]

    Read more

  • Photo reportage | Travelling with a coil

    From the salt marshes of the inland sea Étang-de-Berre to the rolling hills around the ITER site (with a view of some of the highest alpine summits) an ITER con [...]

    Read more

  • Image of the week | Shiny steel and sharp edges

    All shiny steel, sharp edges and perfectly machined penetrations and grooves, two toroidal field coils are being prepared for the pre-assembly process. The sp [...]

    Read more

  • Vacuum vessel sector #6 | On its way

    A 440-tonne, 40-degree sector of the ITER vacuum vessel left Busan, Korea, on Sunday 28 June. A unique component has taken to the sea—one that was more than t [...]

    Read more

  • Top management | Keun-Kyeong Kim, Head of Construction

    In the small Korean village (25 houses!) where Keun-Kyeong Kim spent the first eight years of his life, there was no electricity— just batteries to power transi [...]

    Read more

Of Interest

See archived entries

Preparing for the future at Tore Supra

Robert Arnoux

Fusion Science Master's students got their first taste of ''fusion for real'' at Tore Supra. (Click to view larger version...)
Fusion Science Master's students got their first taste of ''fusion for real'' at Tore Supra.
The challenges of fusion are many. One, however, holds the key to all others: the training of a new generation of fusion scientists who will take fusion to the threshold of industrial and commercial production.

Last month, as part of their Fusion Science Master's program, students from participating French universities got their first taste of "fusion for real" at Tore Supra. Practical fieldwork included measurements of the critical current inside a superconducting strand, studies of the confinement regime of ohmic plasmas and qualification of plasma-facing components.

For a student, it was a great time to be doing fieldwork at Tore Supra. The CEA-Euratom superconducting tokamak recently began experiments with the newest lower hybrid antenna, and achieved the coupling of 2.7 MW to a stationary plasma for 80 seconds—representing 223 MJ of energy injected.

Tore Supra's research on disruption mitigation is important for preparing ITER exploitation. (Click to view larger version...)
Tore Supra's research on disruption mitigation is important for preparing ITER exploitation.
Tore Supra also obtained important results in mitigating the effects of disruptions by way of massive gas injection. In present fusion devices, due to the relatively low energy stored in the plasma, disruptions are only a minor inconvenience. In ITER however, the energy in the plasma will be 100 times larger and disruptions could cause damage to the machine—hence the importance of Tore Supra's research in disruption mitigation for preparing ITER exploitation.


return to the latest published articles