Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Vacuum vessel | Second "jewel" to leave Korea

    A second 40-degree sector of the ITER vacuum vessel is about to leave the Hyundai Heavy Industries manufacturing facility in Ulsan, Korea, for shipment to ITER. [...]

    Read more

  • ITER Robots | The experts of tomorrow

    Robotics is at the heart of every major industrial project. In ITER, the operation of mobile automated systems will play a key role in assembling machine compon [...]

    Read more

  • Cryoline network | Now the vertical spools

    At the L3 level of the Tokamak Building, ceiling height in some galleries exceeds 10 metres. But when it comes to lifting a cryoline spool, tilting it 90 degree [...]

    Read more

  • In memoriam | Dhiraj Bora, leading contributor to fusion and ITER

    The ITER community was greatly saddened to learn of the passing of Dhiraj Bora, a well-known expert in plasma physics and tireless proponent of the ITER Project [...]

    Read more

  • Thermal shield portfolio | All shine and precision

    A cluster of polished metal and silver catches the eye at the far end of the Assembly Hall, as thermal shield panels join vacuum vessel #6 inside the arms of a [...]

    Read more

Of Interest

See archived entries

Generating runaway electrons in JET to benefit ITER

Like splashes of water: re-deposited, molten beryllium appears on tiles inside the JET vessel after dedicated experiments. (Click to view larger version...)
Like splashes of water: re-deposited, molten beryllium appears on tiles inside the JET vessel after dedicated experiments.
Recent images of JET interior tiles have shown, in graphic detail, the damage that can be caused by so-called 'runaway' electrons in JET plasmas.

In stable fusion plasmas, fast moving electrons are slowed down by collisions. The balance between acceleration and slowingdown due to collisions ensures that under usual circumstances the electrons have a normal thermal distribution of velocities within the confined plasma.

However, there are certain circumstances—especially just after a plasma has terminated or disrupted — where the 'slowing down' effect of collisions is diminished and indeed largely removed. In this situation, JET acts like a particle accelerator enabling 'runaway' electrons to be accelerated to velocities close to the speed of light.

When the beams of runaway electrons hit the beryllium wall tiles they can travel many centimetres through the material producing characteristic melt pools like the one shown here. Special experiments are designed in JET to create and understand the formation of runaway beams. Fortunately, since installation of JET's ITER-like Wall such events do not occur naturally and have to be deliberately generated for such studies.

The JET experiments are providing ITER with vital information on which strategies are effective at mitigating this threat.

Read the article on EuroFusion website.


return to the latest published articles