Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Crane operator | A cabin in the sky

    There are times, at dusk, when the ITER construction platform resembles an airport, with roads and buildings illuminated by yellow and white lights. From their [...]

    Read more

  • Assembly | A colossal task made manageable

    For the execution of work during the next project phase—machine and plant assembly up to First Plasma—the ITER Organization has chosen a contractual approach th [...]

    Read more

  • Neutral Beam Test Facility | A new agreement for a new era

    The ITER Organization and the Italian consortium Consorzio RFX* have signed a new agreement governing the construction and operation of the ITER Neutral Beam Te [...]

    Read more

  • Load tests | Heavyweight champion

    The Assembly Hall, with its two giant tools towering 20 metres above ground, is one of the most spectacular locations on the ITER site. When a dummy load weighi [...]

    Read more

  • Fusion's new pioneers | How to go fast enough to make a difference

    Last month in New York, the Stellar Energy Foundation and the Fusion Industry Association co-hosted an invitation-only workshop: 'Roadmap to the Fusion Energy E [...]

    Read more

Of Interest

See archived entries

Generating runaway electrons in JET to benefit ITER

EUROfusion

Like splashes of water: re-deposited, molten beryllium appears on tiles inside the JET vessel after dedicated experiments. (Click to view larger version...)
Like splashes of water: re-deposited, molten beryllium appears on tiles inside the JET vessel after dedicated experiments.
Recent images of JET interior tiles have shown, in graphic detail, the damage that can be caused by so-called 'runaway' electrons in JET plasmas.

In stable fusion plasmas, fast moving electrons are slowed down by collisions. The balance between acceleration and slowingdown due to collisions ensures that under usual circumstances the electrons have a normal thermal distribution of velocities within the confined plasma.

However, there are certain circumstances—especially just after a plasma has terminated or disrupted — where the 'slowing down' effect of collisions is diminished and indeed largely removed. In this situation, JET acts like a particle accelerator enabling 'runaway' electrons to be accelerated to velocities close to the speed of light.

When the beams of runaway electrons hit the beryllium wall tiles they can travel many centimetres through the material producing characteristic melt pools like the one shown here. Special experiments are designed in JET to create and understand the formation of runaway beams. Fortunately, since installation of JET's ITER-like Wall such events do not occur naturally and have to be deliberately generated for such studies.

The JET experiments are providing ITER with vital information on which strategies are effective at mitigating this threat.

Read the article on EuroFusion website.


return to the latest published articles