Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Interview | Michel Huguet on the long chain of "fusion builders"

    Some thirty years ago, the ITER Project entered what is called the Engineering Design Activities, a phase which aimed at providing the engineering drawings and [...]

    Read more

  • Assembly | Long-term coil park

    Manufactured in China under a European contract, poloidal field coil #6 (PF6) was the first magnet to be installed in the assembly pit in late April 2021. Saili [...]

    Read more

  • On site | Safety comes first

    Whether they spend their day in an office at ITER or on one of the upper floors of the Tokamak Complex, driving a vehicle or manoeuvring a crane, every per [...]

    Read more

  • Visitors | EU Commissioner for Energy: "ITER is a unique project in frontier science"

    Kadri Simson, European Union Commissioner for Energy, spent Friday 17 September at ITER. In the course of her visit to key site installations and during the pre [...]

    Read more

  • Image of the week | 2nd vacuum vessel sector passes site tests

    On 27 August, the ITER community celebrated the safe arrival of vacuum vessel sector #1(7)—the second of four sectors expected from the Korean Domestic Agency. [...]

    Read more

Of Interest

See archived entries

Generating runaway electrons in JET to benefit ITER

Like splashes of water: re-deposited, molten beryllium appears on tiles inside the JET vessel after dedicated experiments. (Click to view larger version...)
Like splashes of water: re-deposited, molten beryllium appears on tiles inside the JET vessel after dedicated experiments.
Recent images of JET interior tiles have shown, in graphic detail, the damage that can be caused by so-called 'runaway' electrons in JET plasmas.

In stable fusion plasmas, fast moving electrons are slowed down by collisions. The balance between acceleration and slowingdown due to collisions ensures that under usual circumstances the electrons have a normal thermal distribution of velocities within the confined plasma.

However, there are certain circumstances—especially just after a plasma has terminated or disrupted — where the 'slowing down' effect of collisions is diminished and indeed largely removed. In this situation, JET acts like a particle accelerator enabling 'runaway' electrons to be accelerated to velocities close to the speed of light.

When the beams of runaway electrons hit the beryllium wall tiles they can travel many centimetres through the material producing characteristic melt pools like the one shown here. Special experiments are designed in JET to create and understand the formation of runaway beams. Fortunately, since installation of JET's ITER-like Wall such events do not occur naturally and have to be deliberately generated for such studies.

The JET experiments are providing ITER with vital information on which strategies are effective at mitigating this threat.

Read the article on EuroFusion website.


return to the latest published articles