Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Cryolines | Out through the door, in through the roof

    Cooling fluids for the machine's magnets, thermal shield and cryopumps will travel to the Tokamak Building through a set of large multi-process pipes (cryolines [...]

    Read more

  • Image of the week | Next in line

    Of six ring-shaped coils required for the ITER Tokamak, poloidal field coil #6 (PF6) is the heaviest (400 tonnes) and the second smallest, with a diameter of 10 [...]

    Read more

  • Assembly tools | Strong base for a very heavy task

    The first part of the in-pit assembly tool has been installed in the Tokamak pit. When complete, the tool will stand more than 20 metres high and branch out in [...]

    Read more

  • Diagnostics | A stowaway on board toroidal field coil #8

    Hidden inside the steel case of the most recent toroidal field coil delivered to ITER—TF8, from Japan—is a unique and critical diagnostic device. Named after th [...]

    Read more

  • Vacuum vessel sector | A 90° tilt in mid-air

    Ever since ITER entered the machine assembly phase, some ten months ago, we have been treated to a few spectacular lifting operations. In May 2020, we watched t [...]

    Read more

Of Interest

See archived entries

Design of European Test Blanket Modules reviewed

The ITER Test Blanket Module (TBM) program has begun to transition from scientific research to nuclear engineering and realization. Conceptual design work is currently underway on all six Test Blanket Systems planned for testing on ITER.
 
Two European test breeding concepts: the Helium-Cooled Pebble-Bed (HCPB) and the Helium-Cooled Lead Lithium (HCLL) were reviewed during the Conceptual Design Review organized from 8 to 12 June 2015 by the European Domestic Agency and ITER Organization. (Click to view larger version...)
Two European test breeding concepts: the Helium-Cooled Pebble-Bed (HCPB) and the Helium-Cooled Lead Lithium (HCLL) were reviewed during the Conceptual Design Review organized from 8 to 12 June 2015 by the European Domestic Agency and ITER Organization.
From 8 to 12 June, 30 experts came together in Barcelona to review the conceptual design of two TBM concepts put forward by Europe: the Helium-Cooled Pebble-Bed (HCPB) and the Helium-Cooled Lead Lithium (HCLL). (The key difference lies in the type of materials used for the tritium breeder.) By testing tritium concepts on ITER in a real fusion environment, scientists have a unique opportunity to explore the most promising techniques for tritium breeding that will be a critical technology for next-phase fusion devices.

Under the leadership of the European Domestic Agency for ITER, Fusion for Energy, European companies IDOM, Atmostat, AMEC Foster Wheeler, Empresarios Agrupados, Assystem, Iberdrola, and European fusion laboratories KIT, CEA, ENEA, CIEMAT, UJV, KFKI, NRG have been collaborating extensively to push back R&D frontiers.

During the Conceptual Design Review organized jointly by Fusion for Energy and the ITER Organization, years of hard work and engineering reports exceeding 1,500 pages were examined. Participants focused on verifying that the requirements of the systems had been properly taken into account in the design, that risks had been taken into consideration and minimized, and that all boundaries of the system in ITER had been established and secured. For Yves Poitevin, Fusion for Energy's Project Manager for TBM systems, and his team, "this has been a turning point for the field because years of R&D work have taken shape and evolved into an engineering design that one day will be a system in ITER."

See the original article on the European Domestic Agency website.


return to the latest published articles