Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Men of measure

    'Neither snow nor rain nor heat nor gloom of night stays these couriers from the swift completion of their appointed rounds.' [From the Greek historian Herodotu [...]

    Read more

  • The end of a nine-year journey

    In December, as toroidal field conductor unit length #133 came off the production line, the ITER community celebrated a major milestone—the end of a nine-year p [...]

    Read more

  • The little coupler that could

    Concrete and steel met at the end of the 19th century, never to part again. From their encounter a new material was born that revolutionized construction techni [...]

    Read more

  • The radio power house

    The steel structure extension that's being erected on the northeast side of the Assembly Hall is for a large building that will be densely packed with power sup [...]

    Read more

  • Spaceport ITER

    At nightfall, when buildings, work areas, roads and parking lots light up, the ITER site looks like an alien spaceport. Drenched in the yellow glow of sodium l [...]

    Read more

Of Interest

See archived articles

Hot times for fusion plasmas

Fusion plasmas make the front cover of the latest issue of Physics Today (October 2015). (Click to view larger version...)
Fusion plasmas make the front cover of the latest issue of Physics Today (October 2015).
In the October issue of Physics Today, three US researchers
report on recent advances in the understanding of wave-particle physics in tokamaks.

In fusion plasmas, interactions between electromagnetic waves and the most energetic ions can perturb ion orbits enough to expel them from the confining magnetic field, resulting in loss of performance. A better understanding of energetic ion behavior in tokamaks is needed to predict and produce the operating parameters required for a fusion reactor.

Based on experiments and simulations of wave-induced ion transport, researchers David Pace (General Atomics), Bill Heidbrink (University of California, Irvine) and Michael Van Zeeland (General Atomics) have supplied new details on the process. Continued development of wave-particle physics will arm researchers with the ability to predict, and then avoid or mitigate, scenarios at ITER in which alpha particles are transported out of their confined orbits in the plasma.

Read the full article at AIP Scitation.
A pdf version of the article can also be downloaded from the General Atomics website.


return to the latest published articles