Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cryoplant | A vertical displacement event

    Three vertical storage tanks have been installed since last week outside of the cryoplant. The operation requires two powerful cranes working in tandem but also [...]

    Read more

  • Science in Texas | ITER draws enthousiasm

    At its Annual Meeting in Austin, Texas, the American Association for the Advancement of Science, AAAS, invited participants to illustrate how investment in basi [...]

    Read more

  • Image of the week | In the belly of the (flying) whale

    On 15 February, 'Isabelle' and 'Jeanne,' the last of the ten toroidal field coils manufactured in France for the EU-Japan tokamak JT-60SA, were swallowed into t [...]

    Read more

  • Nuclear safety | "A pragmatic and creative approach"

    Safety is at the core of all nuclear activities. Over the past seven decades—since the first experimental reactor was brought to criticality in 1942—codes, stan [...]

    Read more

  • Intellectual property | Modernizing processes and practices

    'A wise man will always allow a fool to rob him of ideas without yelling 'Thief.' If he is wise, he has not been impoverished,' says Ben Hecht in A Child of the [...]

    Read more

Of Interest

See archived articles

Hot times for fusion plasmas

Fusion plasmas make the front cover of the latest issue of Physics Today (October 2015). (Click to view larger version...)
Fusion plasmas make the front cover of the latest issue of Physics Today (October 2015).
In the October issue of Physics Today, three US researchers
report on recent advances in the understanding of wave-particle physics in tokamaks.

In fusion plasmas, interactions between electromagnetic waves and the most energetic ions can perturb ion orbits enough to expel them from the confining magnetic field, resulting in loss of performance. A better understanding of energetic ion behavior in tokamaks is needed to predict and produce the operating parameters required for a fusion reactor.

Based on experiments and simulations of wave-induced ion transport, researchers David Pace (General Atomics), Bill Heidbrink (University of California, Irvine) and Michael Van Zeeland (General Atomics) have supplied new details on the process. Continued development of wave-particle physics will arm researchers with the ability to predict, and then avoid or mitigate, scenarios at ITER in which alpha particles are transported out of their confined orbits in the plasma.

Read the full article at AIP Scitation.
A pdf version of the article can also be downloaded from the General Atomics website.


return to the latest published articles