Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Crane operator | A cabin in the sky

    There are times, at dusk, when the ITER construction platform resembles an airport, with roads and buildings illuminated by yellow and white lights. From their [...]

    Read more

  • Assembly | A colossal task made manageable

    For the execution of work during the next project phase—machine and plant assembly up to First Plasma—the ITER Organization has chosen a contractual approach th [...]

    Read more

  • Neutral Beam Test Facility | A new agreement for a new era

    The ITER Organization and the Italian consortium Consorzio RFX* have signed a new agreement governing the construction and operation of the ITER Neutral Beam Te [...]

    Read more

Of Interest

See archived entries

Hot times for fusion plasmas

Fusion plasmas make the front cover of the latest issue of Physics Today (October 2015). (Click to view larger version...)
Fusion plasmas make the front cover of the latest issue of Physics Today (October 2015).
In the October issue of Physics Today, three US researchers
report on recent advances in the understanding of wave-particle physics in tokamaks.

In fusion plasmas, interactions between electromagnetic waves and the most energetic ions can perturb ion orbits enough to expel them from the confining magnetic field, resulting in loss of performance. A better understanding of energetic ion behavior in tokamaks is needed to predict and produce the operating parameters required for a fusion reactor.

Based on experiments and simulations of wave-induced ion transport, researchers David Pace (General Atomics), Bill Heidbrink (University of California, Irvine) and Michael Van Zeeland (General Atomics) have supplied new details on the process. Continued development of wave-particle physics will arm researchers with the ability to predict, and then avoid or mitigate, scenarios at ITER in which alpha particles are transported out of their confined orbits in the plasma.

Read the full article at AIP Scitation.
A pdf version of the article can also be downloaded from the General Atomics website.


return to the latest published articles