Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Challenges | Managing risk in a first-of-a-kind project

    The classic approach to project management is to group risks into three separate categories. The first consists of known risks, the second of unknown risks, and [...]

    Read more

  • Steve Cowley | Projecting into the coming decades

    Steven Cowley, who now heads the Princeton Plasma Physics Laboratory (PPPL), gave a seminar last week at CEA-Cadarache and he had some good news regarding the s [...]

    Read more

  • Outreach | What vacuum does to marshmallows

    Every year in France, science is "à la fête" for two consecutive weekends in October. Free events and demonstrations—tailored particularly to school-a [...]

    Read more

  • Physics | 11th ITER International School announced

    The 11th ITER International School will be held from 20 to 24 July 2020, hosted by Aix-Marseille University in Aix-en-Provence, France. The subject of this year [...]

    Read more

  • Image of the week | An anniversary in blue, white and red

    ITER neighbour and close partner in fusion research, the CEA-Cadarache nuclear research centre, was established in October 1959. This week, it celebrated the 60 [...]

    Read more

Of Interest

See archived entries

Fusion diagnostics heat up across the US

Lynne Degitz, US ITER

Six of seven US diagnostic systems are in the preliminary design phase with teams actively investigating physics and engineering issues through testing, prototype development and proof-of-principle activities. Pictured: a corner cube reflector prototype for the toroidal interferometer and polarimeter diagnostic. Photo: PPPL (Click to view larger version...)
Six of seven US diagnostic systems are in the preliminary design phase with teams actively investigating physics and engineering issues through testing, prototype development and proof-of-principle activities. Pictured: a corner cube reflector prototype for the toroidal interferometer and polarimeter diagnostic. Photo: PPPL
The ITER tokamak will have over 60 diagnostic systems installed to enable plasma control, optimize plasma performance and support machine protection.

Two US laboratories, the Princeton Plasma Physics Laboratory (PPPL) and the Oak Ridge National Laboratory (ORNL) in collaboration with industry and universities, are developing the US contributions to ITER diagnostic systems. At this point, six of seven US diagnostic systems are in preliminary design with teams actively investigating physics and engineering issues through testing, prototype development and proof-of-principle activities.

"ITER diagnostics will use well-established techniques that are operational on tokamaks around the world. The challenge is designing systems that can withstand the harsh ITER operating environment," said US ITER diagnostics team leader Russ Feder of PPPL.

The first tokamak designed to sustain burning plasma, ITER will operate with pulse lengths up to an hour; diagnostic systems will potentially be exposed to high magnetic fields, neutron flux, and intense heat.

"ITER will also shake and move a lot. So we have to plan for vibrations and alignment challenges. This makes the physics and the engineering very interdependent," Feder said. "We have made major progress this year across six systems."

All of these diagnostic systems will feed information to ITER operators and scientists. One reason ITER has so many diagnostics is to provide redundant systems using different tools for measurement of similar plasma characteristics, confirming measurement accuracy.

Right now, teams are working on diagnostic systems across the US. Prototypes and testing are underway, with major recent progress occurring on the electron cyclotron emission diagnostic, the toroidal interferometer and polarimeter, and the upper infrared cameras.

Read the full story on the US ITER website.


return to the latest published articles