Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Art and ITER | Two sisters, two suns and a monument to fusion

    Amid the gentle slopes of Asciano, Italy, there stands a stone window that frames the Sun on the summer solstice. It looks as though it might have always been t [...]

    Read more

  • Staff | The men and women of ITER

    They hail from Ahmedabad and Prague ... from Naka and Moscow ... from Seoul, Hefei, Atlanta and hundreds of other towns and cities across the 35 nations partici [...]

    Read more

  • ITER Talks | All about ITER and fusion

    Beginning this autumn, the ITER Organization will be launching a new video series to inform, inspire and educate. The first video—introducing the series and off [...]

    Read more

  • Image of the week | A majestic components enters the stage

    The floor of the Assembly Hall is an ever-changing stage. Like characters in a grand production, components of all size and shapes make a spectacular entry, pl [...]

    Read more

  • Magnet system | A set of spares for the long journey

    In about five years, ITER will embark on a long journey through largely uncharted territory. Conditions will be harsh and—despite all the calculations, modellin [...]

    Read more

Of Interest

See archived entries

Fusion diagnostics heat up across the US

Six of seven US diagnostic systems are in the preliminary design phase with teams actively investigating physics and engineering issues through testing, prototype development and proof-of-principle activities. Pictured: a corner cube reflector prototype for the toroidal interferometer and polarimeter diagnostic. Photo: PPPL (Click to view larger version...)
Six of seven US diagnostic systems are in the preliminary design phase with teams actively investigating physics and engineering issues through testing, prototype development and proof-of-principle activities. Pictured: a corner cube reflector prototype for the toroidal interferometer and polarimeter diagnostic. Photo: PPPL
The ITER tokamak will have over 60 diagnostic systems installed to enable plasma control, optimize plasma performance and support machine protection.

Two US laboratories, the Princeton Plasma Physics Laboratory (PPPL) and the Oak Ridge National Laboratory (ORNL) in collaboration with industry and universities, are developing the US contributions to ITER diagnostic systems. At this point, six of seven US diagnostic systems are in preliminary design with teams actively investigating physics and engineering issues through testing, prototype development and proof-of-principle activities.

"ITER diagnostics will use well-established techniques that are operational on tokamaks around the world. The challenge is designing systems that can withstand the harsh ITER operating environment," said US ITER diagnostics team leader Russ Feder of PPPL.

The first tokamak designed to sustain burning plasma, ITER will operate with pulse lengths up to an hour; diagnostic systems will potentially be exposed to high magnetic fields, neutron flux, and intense heat.

"ITER will also shake and move a lot. So we have to plan for vibrations and alignment challenges. This makes the physics and the engineering very interdependent," Feder said. "We have made major progress this year across six systems."

All of these diagnostic systems will feed information to ITER operators and scientists. One reason ITER has so many diagnostics is to provide redundant systems using different tools for measurement of similar plasma characteristics, confirming measurement accuracy.

Right now, teams are working on diagnostic systems across the US. Prototypes and testing are underway, with major recent progress occurring on the electron cyclotron emission diagnostic, the toroidal interferometer and polarimeter, and the upper infrared cameras.

Read the full story on the US ITER website.


return to the latest published articles