Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Worksite postcards | Under fog and autumn light

    Due to its proximity to the Durance River and to the narrow gully spanned by the Bridge of Mirabeau, the area around ITER often experiences a peculiar meteorolo [...]

    Read more

  • Assembly Hall | Another massive paint job

    By the end of December, the massive painting job in the Assembly Hall will be complete and the building's floor will be as white and pristine as the landscape i [...]

    Read more

  • ITER India | Testing a neutral beam for diagnostics

    Every 23 seconds during fusion operation, a probe beam will penetrate deep into the core of the ITER plasma to aid in the detection of helium ash—one of fusion' [...]

    Read more

  • Welded attachments | Follow the laser projections

    How do you position 150,000 welded attachments on to a vacuum vessel the size of a house, each one needing to be accurately placed to less than a 4 mm target? [...]

    Read more

  • Visit | Our neighbour the Nobel

    In 2018, the Nobel Prize in Physics was awarded to Gérard Mourou for his work on ultra-short, extremely high-intensity laser pulses—the so-called 'chirped pulse [...]

    Read more

Of Interest

See archived entries

Sensor prototypes to measure magnetic field

One of the LTCC sensor prototypes manufactured for the European Domestic Agency by Via Electronic. (Click to view larger version...)
One of the LTCC sensor prototypes manufactured for the European Domestic Agency by Via Electronic.
The European Domestic Agency is collaborating with German supplier Via Electronic on sensors for measuring magnetic field. Installed in the heart of the ITER machine, more than 200 of these instruments will be relied on to provide vital information in the control of the ITER plasma. 

Via Electronic is producing a series of 40 prototypes, working closely with the European agency to optimize design parameters. Each prototype consists of 34 ceramic layers, 30 of which contain a screen-printed spiral coil circuit made out of pure silver. The individual spirals, which have a width of 400 µm and a height of 12 µm, are connected together with inter-layer "vias," so that the whole assembly forms a single pick-up coil. Low-temperature co-fired ceramic manufacturing (LTCC) produces a very robust product that is fully encapsulated in ceramic.

"It's important for these sensors to be particularly robust as they will be located in a very harsh environment close to the plasma, with extremely limited access once ITER operation begins," says Shakeib Arshad, Europe's technical officer for this equipment. "Although this type of technology has been used extensively in other applications, for example in medical equipment, it is unconventional in fusion because simpler technology was adequate in the smaller tokamaks built up until now."

Following the fabrication of a first batch of prototypes in 2014, several refinements were made to the original design. Eight variants are being produced with different wiring schemes and electrical screen thicknesses. 

The European Domestic Agency is also preparing two additional contracts for the fabrication of similar prototypes by other suppliers. "As the next step, these prototypes will be irradiation tested in a fission reactor, in order to establish their performance in an ITER-like environment," says Sandra Julià Torres, Europe's officer for the prototyping contracts. "Irradiation testing is costly and the results can depend on subtle manufacturing details. Prototypes from several manufacturers are desirable for this reason."

Irradiation testing will be carried out by NRG in The Netherlands and CVR in the Czech Republic. Additionally, a computer model is being developed by the Belgian Nuclear Research Centre SCK-CEN in order to help with interpretation of the irradiation tests.

Read the original article on the European Domestic Agency website.


return to the latest published articles