Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Neutral Beam Test Facility | Lessons learned from SPIDER, a full-size negative ion source

    SPIDER finished its first test campaign in late November 2021 and is now entering an upgrade phase. During this time, the testbed will be shut down for about on [...]

    Read more

  • Manufacturing | Korea completes a third vacuum vessel sector

    A third 40-degree sector of the ITER vacuum vessel has exited the Hyundai Heavy Industries production line in Ulsan, Korea. Sectors representing one-third of th [...]

    Read more

  • On-site coil manufacturing | Two more to go!

    In the European winding facility on site, two large poloidal field coils have already left the manufacturing line. Two others are currently advancing through th [...]

    Read more

  • Manufacturing | Completion of the first vacuum vessel gravity support

    The factory acceptance test on the first ITER vacuum vessel gravity support has been successfully completed at Haneul Engineering in Gunsan, Korea. Under the 8, [...]

    Read more

  • Technology | Hail showers in ASDEX Upgrade for ITER disruption mitigation

    Just before the 2021 Christmas holiday break, the team at the ASDEX Upgrade tokamak successfully fired frozen deuterium pellet fragments into a plasma as part o [...]

    Read more

Of Interest

See archived entries

Panel confirms gas manifold system design

The gas distribution manifold system is needed to deliver different gas species from the Tritium Plant to the vacuum vessel. Prototype junction configurations have been produced to test manufacturability and assembly feasibility. (Click to view larger version...)
The gas distribution manifold system is needed to deliver different gas species from the Tritium Plant to the vacuum vessel. Prototype junction configurations have been produced to test manufacturability and assembly feasibility.
The final design review of the gas distribution manifold system, part of ITER's gas injection system, was held from 8 to 10 December 2015 in Chengdu, China. More than 40 participants attended the review either on-site or remotely, including 13 panel members and participants from the ITER Organization, the Chinese Domestic Agency, and the contracting institute Southwestern Institute of Physics.

The gas injection system in ITER is responsible for the "initial fill" of the vacuum chamber prior to plasma initiation; for puffing gas into the chamber during the ramp-up phase; for controlling plasma density during the flattop of plasma burn; and for protecting the divertor targets from discharges by injecting impurity gases.

In order to service the pellet injection, gas fuelling, neutral beam and disruption mitigation systems, different gas species from the Tritium Plant (hydrogenic species, helium, and the impurity gases argon, neon and nitrogen) will be delivered via a gas distribution manifold to gas valve boxes located in the vacuum vessels ports. According to the ITER machine assembly schedule, this gas distribution manifold system is expected on site before the rest of the gas injection system; for this reason, a separate design review was organized.

The three-day review took place in December in China with participants from the ITER Organization, the Chinese Domestic Agency, and the contracting institute Southwestern Institute of Physics. (Click to view larger version...)
The three-day review took place in December in China with participants from the ITER Organization, the Chinese Domestic Agency, and the contracting institute Southwestern Institute of Physics.
The manifold system consists of six gas supply lines and one evacuation line enclosed in a guard pipe for safe tritium handling. The main design challenge has been to avoid the interference of pipe junctions in vertical and horizontal directions, while taking into account the limited available space along the manifold route and the feasibility of assembly and maintenance. During the optimization process, up to four junction configurations were designed for each type of gas valve box. Prototypes of the different elements of the gas distribution manifold system have been produced to test manufacturability and assembly feasibility, and to allow for further optimization.

Prof. Wang Yan, the chairman of the review panel, confirmed the suitability of the design and thanked the manifold team members for their hard work and effort. Based on feedback from the review, the focus will now be to perfect the design and ensure a smooth transition from the final design phase to the manufacturing readiness review phase.


return to the latest published articles