Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Open Doors Day | An intense and unforgettable experience

    Saturday was Jacques's birthday. At age 90, the long-retired engineer from Aix-en-Provence had only one item on his wish list: to visit ITER for a third time an [...]

    Read more

  • Power conversion | A potent illustration of the "One ITER" spirit

    Europe made the buildings; the piping came from India; China and Korea provided the transformers; Russia manufactured the massive 'busbar' network. The ITER Org [...]

    Read more

  • Fusion world | Upgrade completed on DIII-D tokamak

    The DIII-D National Fusion Program (US) has completed a series of important enhancements to its fusion facility, providing researchers with several first-of-a-k [...]

    Read more

  • Vacuum lab | Ensuring leak test sensitivity

    A helium leak test is one of several factory acceptance tests planned for the sectors of the ITER vacuum vessel before they are shipped to ITER. In a vacuum lab [...]

    Read more

  • Bookmark | The Future of Fusion Energy

    To write about fusion is to walk a fine line between the temptation of lyricism and the arid demands of scientific accuracy. Whereas the general media tends to [...]

    Read more

Of Interest

See archived entries

Wendelstein: and now hydrogen!

German Chancellor Angela Merkel prepares to initiate the first hydrogen plasma at Wendelstein 7-X on 3 February 2016. The Chancellor is pictured with IPP Scientific Director Sibylle Günter; president of the Helmholtz Society Otmar Wiestler; and Erwin Sellering, Minister-President of Mecklenburg-Vorpommern. Photo credit: AFP (Click to view larger version...)
German Chancellor Angela Merkel prepares to initiate the first hydrogen plasma at Wendelstein 7-X on 3 February 2016. The Chancellor is pictured with IPP Scientific Director Sibylle Günter; president of the Helmholtz Society Otmar Wiestler; and Erwin Sellering, Minister-President of Mecklenburg-Vorpommern. Photo credit: AFP
The Wendelstein 7-X fusion device at the Max Planck Institute for Plasma Physics (IPP) in Greifswald, Germany produced its first hydrogen plasma on 3 February 2016, marking the start of scientific operation. As the world's largest stellarator, Wendelstein 7-X will investigate the suitability of this type of fusion device for the design of a fusion power plant.

Since the start of operation on 10 December 2015, Wendelstein 7-X has produced more than 300 discharges with helium. These served primarily to clean the plasma vessel, and as cleanliness increased, plasma temperature increased ... finally attaining six million degrees Celsius. Plasma heating and data recording were also tested during this period and the first measuring instruments for investigating the plasma were put into operation (X-ray spectrometers, interferometers, laser scattering and video diagnostics).

The first hydrogen plasma, which was switched on by German Chancellor Angela Merkel at a ceremony on 3 February 2016, marks the start of scientific operation. A 2 MW pulse of microwave heating transformed a tiny quantity of hydrogen gas into an extremely hot (80 million degrees Celsius) low-density hydrogen plasma for a quarter of a second.

The present initial experimentation phase will last until mid-March. The plasma vessel will then be opened in order to install carbon tiles for the protection of the vessel walls and the divertor. "These facilities will enable us to attain higher heating powers, higher temperatures, and longer discharges lasting up to ten seconds," explained Thomas Klinger project head for Wendelstein 7-X. Successive extensions are planned until, in about four years, discharges lasting 30 minutes can be produced with full heating power of 20 MW.

Wendelstein 7-X, the world's largest stellarator-type fusion device, will not produce energy. The goal is to put the quality of the plasma confinement on a par with that of a tokamak for the very first time. And with discharges lasting 30 minutes, the stellarator should demonstrate its fundamental advantage—the ability to operate continuously. In contrast, tokamaks can only operate in pulses without auxiliary equipment.

The assembly of Wendelstein 7-X began in April 2005. Investment costs of approximately EUR 370 million are being met by the federal and state governments, and also by the European Union. The components were manufactured by companies throughout Europe and numerous research facilities at home and abroad were involved in the construction of the device. Within the framework of the Helmholtz Association of German Research Centres, the Karlsruhe Institute of Technology was responsible for the microwave plasma heating; the Jülich Research Centre built measuring instruments and produced the elaborate connections for the superconducting magnetic coils; installation was carried out by specialists from the Polish Academy of Science in Krakow; and American fusion research institutes at Princeton, Oak Ridge and Los Alamos contributed equipment including auxiliary coils and measuring instruments. 

Read the full press release in English and in German.
 
Learn more about Wendelstein 7-X and the stellarator type of fusion device on the IPP website.


return to the latest published articles