Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Plasma physics | Be clean, be strong

    To achieve maximum fusion efficiency in a tokamak device it is essential to limit the impurities in the plasma. But this can be a challenge, as interaction betw [...]

    Read more

  • Coil power supply | Switching network tested in Russia

    Plasma could not be created in the ITER vacuum vessel without switching network units, whose operation creates the voltage that 'ionizes*' the cloud of fuel ato [...]

    Read more

  • Star struck | For Silicon Valley philanthropist ITER is "the only way"

    One is planning to send tiny spacecrafts to the nearest stellar system; the other aims to bring the power of the stars to Earth. Yuri Milner, Russian-born entre [...]

    Read more

  • Cryogenics | How low can you go?

    The realm of the extremely cold is fascinating. Temperatures driving toward absolute zero, 'steaming' cryogenic liquids and hovering magnets create an air of ma [...]

    Read more

  • Stakeholders | Europe's vote of confidence

    The bottom line is always what matters. For the statement issued on Thursday 12 April by the European Council of Ministers, the key phrase was in the final poin [...]

    Read more

Of Interest

See archived articles

Winding completed on first central solenoid module

US ITER

The final turns of the first central solenoid module on the winding table at General Atomics. Photo: GA (Click to view larger version...)
The final turns of the first central solenoid module on the winding table at General Atomics. Photo: GA
The US Domestic Agency and vendor General Atomics completed a major milestone on 6 April by winding the first module for the ITER central solenoid. The feat was accomplished at the General Atomics Magnet Development Facility in Poway, California.

Each central solenoid module is fabricated from approximately 6,000 metres of niobium-tin (Nb3Sn) conductor, supplied by Japan in seven spools. The central solenoid, a giant electromagnet considered the "heartbeat of ITER," will consist of six stacked modules surrounded by a support structure.  When assembled, the entire 13 Tesla central solenoid and associated structures will be 13 metres tall and weigh 1,000 metric tons.

Conductor from six spools is wound to form six separate hexapancakes (6 layers) containing 14 turns. The seventh spool is wound to form a quadpancake (4 layers) containing 14 turns.

After winding, the completed hexapancakes and quadpancake will be stacked and joined prior to heat treatment, insulation, vacuum pressure impregnation, and final testing.


return to the latest published articles