Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Neutral Beam Test Facility | Lessons learned from SPIDER, a full-size negative ion source

    SPIDER finished its first test campaign in late November 2021 and is now entering an upgrade phase. During this time, the testbed will be shut down for about on [...]

    Read more

  • Manufacturing | Korea completes a third vacuum vessel sector

    A third 40-degree sector of the ITER vacuum vessel has exited the Hyundai Heavy Industries production line in Ulsan, Korea. Sectors representing one-third of th [...]

    Read more

  • On-site coil manufacturing | Two more to go!

    In the European winding facility on site, two large poloidal field coils have already left the manufacturing line. Two others are currently advancing through th [...]

    Read more

  • Manufacturing | Completion of the first vacuum vessel gravity support

    The factory acceptance test on the first ITER vacuum vessel gravity support has been successfully completed at Haneul Engineering in Gunsan, Korea. Under the 8, [...]

    Read more

  • Technology | Hail showers in ASDEX Upgrade for ITER disruption mitigation

    Just before the 2021 Christmas holiday break, the team at the ASDEX Upgrade tokamak successfully fired frozen deuterium pellet fragments into a plasma as part o [...]

    Read more

Of Interest

See archived entries

Designing modular tools for in-vessel assembly

In order to carry out the installation of the ITER in-vessel components—such as the diagnostic looms, in-vessel coils, blanket shield blocks and first-wall panels—the ITER Organization will require a set of specifically engineered tools.

These tools will have to operate in limited space, respect challenging cleanliness specifications that restrict the type of lubricant or paint that can be used, and be capable of holding and positioning loads of around 5 tonnes with high accuracy. They will also have to be conceived in a modular fashion, to be assembled or dis-assembled as needed in the staging area.

CNIM will design and manufacture a Trial, Test and Training Facility that demonstrates that the tooling can achieve the required in-vessel assembly tasks. Although not built from the same materials as ITER, it will perfectly reproduce the ''space envelope'' within which the in-vessel assembly tools will have to operate. (Click to view larger version...)
CNIM will design and manufacture a Trial, Test and Training Facility that demonstrates that the tooling can achieve the required in-vessel assembly tasks. Although not built from the same materials as ITER, it will perfectly reproduce the ''space envelope'' within which the in-vessel assembly tools will have to operate.
In December 2015, the ITER Organization signed a contract with CNIM Industrial Systems (Toulon, France) for the engineering design, manufacture and testing of the mechanical handling equipment as well as the platform-type staging required for access within the vessel. Contract scope also includes a trial and test facility that will serve to qualify the tools and to train future operators. 

On the basis of the ITER conceptual design and technical specifications, CNIM will propose solutions and develop the detailed design of all tools. 

See the gallery below for a description for some of the principal in-vessel assembly tools.

Staging for personnel access

Five levels of staging will be required to inside of the vacuum vessel to give technicians safe, fast and easy access to all areas of the vacuum vessel interior to perform the installation tasks. The system must be sturdy, yet flexible enough to allow assembly and dis-assembly according to the movement of the in-vessel cranes and other handling tools. The staging will also incorporate a lighting system. The modular design allows the staging to be re-configured into any combinations of levels in different parts of the vacuum vessel and will allow many different types of work to proceed in parallel. The staging will be used at the very beginning of the assembly process to install some components in the vacuum vessel sectors when they are at sub-assembly stage even before they are lifted to the pit.

10 May 2016

Download


return to the latest published articles