Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Computer-Aided Design | A new platform with Australia

    In September 2016, the signature of a Cooperation Agreement between the Australian Nuclear Science and Technology Organisation (ANSTO) and the ITER Organization [...]

    Read more

  • Ten years later | A prodigious adventure

    ITER began its existence as an aspiration in the early 1980s, as actors in the fusion community called for the joint machine that would demonstrate the feasibil [...]

    Read more

  • Image of the week | An impromptu visit

    Afteraddressing the UN Climate Change Conference on 15 November, French President Emmanuel Macron toured thecolourful COP23 exhibition zone. It was towards the [...]

    Read more

  • Cryoplant | How to install a compressor

    In order to properly install a helium compressor skid on its concrete pad, you need to start with a large push broom to sweep away the dust that inevitably accu [...]

    Read more

  • Magnetic system | Nine rings to fight the force

    Work on the pre-compression ringsof the ITER magnet system progresses in Europe, where work on a full-scale prototype is underway. These technically challenging [...]

    Read more

Of Interest

See archived articles

The first 60 metres

Inside the Poloidal Field Coils Winding Facility, around 60 metres of conductor length have already been submitted to the series of operations that will ultimately turn cable-in-conduit (CICC) conductor into the "double pancake windings" for the ring-shaped magnets of the ITER Tokamak.

Some 60 metres of conductor length have already been submitted to the de-spooling, straightening, cleaning, bending, re-cleaning, drying and taping operations that mark the first stage of coil fabrication. (Click to view larger version...)
Some 60 metres of conductor length have already been submitted to the de-spooling, straightening, cleaning, bending, re-cleaning, drying and taping operations that mark the first stage of coil fabrication.
The process—from conductor de-spooling to tape and fiberglass wrapping—represents only the first stage of fabrication (the "winding" stage) and just a fraction of the material that will go into making the double pancakes of an actual poloidal field coil.

Depending on their size, the four poloidal field coils manufactured on site by Europe will require from 6 to 14 km of conductor.

With the winding table now commissionned, fabrication for a ''pre-dummy'' and a real-size dummy, using copper conductor in lieu of the actual niobium-titanium (NbTi) alloy, will begin in late June. (Click to view larger version...)
With the winding table now commissionned, fabrication for a ''pre-dummy'' and a real-size dummy, using copper conductor in lieu of the actual niobium-titanium (NbTi) alloy, will begin in late June.
With the winding machine now commissioned, the fabrication of a pre-dummy (a few more turns than the present sample) followed by an actual dummy for poloidal field coil #5 (17 metres in diameter) will begin in late June.

However, before dummy fabrication can start one last operation needs to be performed: the cleaning, from top to bottom, of all the surfaces inside the 12,000 square metres building to ensure the required clean atmosphere—a task that has just begun and will take about four weeks to complete.

Click here to view a video, produced by the European agency for ITER, on the manufacturing process of the ITER poloidal field coils.


return to the latest published articles