Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Fusion machines | The second-hand market

    Whatever their size, fusion devices are fine pieces of technology that are complex to design and expensive to build. As research progresses and experimental pro [...]

    Read more

  • Manufacturing in China | A set of clamps to resist all loads

    China is providing an extensive array of supports and clamps for ITER's superconducting magnet systems—in all, more than 1,600 tonnes of equipment. On 9 June, t [...]

    Read more

  • Power electronics | Coaxial cables arrive from Russia

    Thirty-eight reels of cable on 13 specially equipped trailers ... the recent convoy of electrotechnical equipment shipped by the Russian Domestic Agency was the [...]

    Read more

  • Conference|Lions and mammoths and cave bears—oh my!

    Separated by less than 200 kilometres in space—but by 36,000 years in time—the ITER Tokamak and the Chauvet Cave may seem to have little in common. But to scien [...]

    Read more

  • Neutral beam test facility | First ITER test bed enters operation

    For all those who had contributed to designing and building the world's largest negative ion source, it was a deeply symbolic moment. ITER Director-General Bern [...]

    Read more

Of Interest

See archived articles

The first 60 metres

Inside the Poloidal Field Coils Winding Facility, around 60 metres of conductor length have already been submitted to the series of operations that will ultimately turn cable-in-conduit (CICC) conductor into the "double pancake windings" for the ring-shaped magnets of the ITER Tokamak.

Some 60 metres of conductor length have already been submitted to the de-spooling, straightening, cleaning, bending, re-cleaning, drying and taping operations that mark the first stage of coil fabrication. (Click to view larger version...)
Some 60 metres of conductor length have already been submitted to the de-spooling, straightening, cleaning, bending, re-cleaning, drying and taping operations that mark the first stage of coil fabrication.
The process—from conductor de-spooling to tape and fiberglass wrapping—represents only the first stage of fabrication (the "winding" stage) and just a fraction of the material that will go into making the double pancakes of an actual poloidal field coil.

Depending on their size, the four poloidal field coils manufactured on site by Europe will require from 6 to 14 km of conductor.

With the winding table now commissionned, fabrication for a ''pre-dummy'' and a real-size dummy, using copper conductor in lieu of the actual niobium-titanium (NbTi) alloy, will begin in late June. (Click to view larger version...)
With the winding table now commissionned, fabrication for a ''pre-dummy'' and a real-size dummy, using copper conductor in lieu of the actual niobium-titanium (NbTi) alloy, will begin in late June.
With the winding machine now commissioned, the fabrication of a pre-dummy (a few more turns than the present sample) followed by an actual dummy for poloidal field coil #5 (17 metres in diameter) will begin in late June.

However, before dummy fabrication can start one last operation needs to be performed: the cleaning, from top to bottom, of all the surfaces inside the 12,000 square metres building to ensure the required clean atmosphere—a task that has just begun and will take about four weeks to complete.

Click here to view a video, produced by the European agency for ITER, on the manufacturing process of the ITER poloidal field coils.


return to the latest published articles