Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Assembly | Set of handling tools for in-vessel installation finalized

    Inside of a test facility that reproduces the volume and geometry of the ITER vacuum vessel environment, a team from CNIM Systèmes Industriels has dem [...]

    Read more

  • 360° image of the week | The assembly theatre

    Ever since it was invented almost two centuries ago, photography has tried to capture what the human eye actually sees. Despite huge progress achieved, it has n [...]

    Read more

  • Science | Favourable impurity dynamics in ITER confirmed by experiment

    Recent studies at the JET tokamak confirm the physics basis for tungsten transport at the edge of fusion-producing plasmas in ITER and the project's strategy fo [...]

    Read more

  • Image of the week | 15th D-shaped coil delivered

    Fifteen out of ITER's 19 D-shaped toroidal field coils have been delivered. Toroidal field coils are among the largest and heaviest components of the ITER machi [...]

    Read more

  • Spinoffs | Japan develops first high-output, multi-frequency gyrotron

    Building off expertise developed in the supply of high-power, high-frequency gyrotrons for the ITER Project and the JT-60SA tokamak, Japan's National Insti [...]

    Read more

Of Interest

See archived entries

Wendelstein 7-X pauses after 2,200 plasma shots

The world's biggest and most advanced fusion device of the stellarator type has successfully completed its first experimental campaign.

At Wendelstein 7-X in Germany, the original copper-chrome-zirconium heat-extraction plates will be clad with graphite tiles in the coming weeks to protect the vessel walls for the next campaign of higher-power plasmas. (Click to view larger version...)
At Wendelstein 7-X in Germany, the original copper-chrome-zirconium heat-extraction plates will be clad with graphite tiles in the coming weeks to protect the vessel walls for the next campaign of higher-power plasmas.
Located at the Max Planck Institute for Plasma Physics (IPP) in Greifswald, Germany, Wendelstein 7-X has produced approximately 2,200 plasmas since the start of operations last December, first from helium and then from hydrogen gas.

"We are more than satisfied with the results of the first experimental campaign," reports project head Thomas Klinger. From first pulses of half a second, pulse lengths of six seconds were ultimately achieved. The plasmas with the highest temperatures were produced by microwave heating of four megawatts lasting one second. At mean plasma densities, the physicists were able to measure temperatures of 100 million °C for the plasma electrons, and 10 million °C for the ions. "This greatly exceeded what our rather cautious predictions had led us to believe."

Moreover, the structure and confinement properties of the novel magnetic field proved in the first tests to be as good as expected.

Modifications in the plasma vessel are now proceeding to make the device fit for higher heating powers and longer pulses. The plasma vessel has been re-opened in order to mount 6,000 carbon tiles to protect the vessel walls and insert the divertor in order to be fit for high-power plasmas with heating powers of up to eight megawatts lasting ten seconds.

See the original story on the IPP website.


return to the latest published articles