Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Thermal shield | Practising the embrace

    In the ITER Assembly Hall, fitting tests are underway on two outboard thermal shield panels. Once paired, the 11-metre-tall, silver-plated components will [...]

    Read more

  • Image of the week | This circle is for the ring

    Another concentric circle has been drawn at the bottom of the machine assembly pit, formed by the temporary supports recently installed for poloidal field coil [...]

    Read more

  • Feeders | Multi-lane thruways into the machine

    The ITER superconducting coils thrive on a simple diet of electrical power and cooling fluids. The industrial installation on site is scaled to provide both, bu [...]

    Read more

  • Cryostat Workshop | Top lid enters the stage

    In this vast workshop over the past five years, the different sections of the ITER cryostat have been assembled and welded under India's responsibility. The bas [...]

    Read more

  • Blanket first wall | Manufacturing kicks off in Europe

    For one of the most demanding technological components of the ITER machine—the first wall of the blanket—the European Domestic Agency Fusion for Energy made the [...]

    Read more

Of Interest

See archived entries

Wendelstein 7-X pauses after 2,200 plasma shots

The world's biggest and most advanced fusion device of the stellarator type has successfully completed its first experimental campaign.

At Wendelstein 7-X in Germany, the original copper-chrome-zirconium heat-extraction plates will be clad with graphite tiles in the coming weeks to protect the vessel walls for the next campaign of higher-power plasmas. (Click to view larger version...)
At Wendelstein 7-X in Germany, the original copper-chrome-zirconium heat-extraction plates will be clad with graphite tiles in the coming weeks to protect the vessel walls for the next campaign of higher-power plasmas.
Located at the Max Planck Institute for Plasma Physics (IPP) in Greifswald, Germany, Wendelstein 7-X has produced approximately 2,200 plasmas since the start of operations last December, first from helium and then from hydrogen gas.

"We are more than satisfied with the results of the first experimental campaign," reports project head Thomas Klinger. From first pulses of half a second, pulse lengths of six seconds were ultimately achieved. The plasmas with the highest temperatures were produced by microwave heating of four megawatts lasting one second. At mean plasma densities, the physicists were able to measure temperatures of 100 million °C for the plasma electrons, and 10 million °C for the ions. "This greatly exceeded what our rather cautious predictions had led us to believe."

Moreover, the structure and confinement properties of the novel magnetic field proved in the first tests to be as good as expected.

Modifications in the plasma vessel are now proceeding to make the device fit for higher heating powers and longer pulses. The plasma vessel has been re-opened in order to mount 6,000 carbon tiles to protect the vessel walls and insert the divertor in order to be fit for high-power plasmas with heating powers of up to eight megawatts lasting ten seconds.

See the original story on the IPP website.


return to the latest published articles