Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Plasma physics | Be clean, be strong

    To achieve maximum fusion efficiency in a tokamak device it is essential to limit the impurities in the plasma. But this can be a challenge, as interaction betw [...]

    Read more

  • Coil power supply | Switching network tested in Russia

    Plasma could not be created in the ITER vacuum vessel without switching network units, whose operation creates the voltage that 'ionizes*' the cloud of fuel ato [...]

    Read more

  • Star struck | For Silicon Valley philanthropist ITER is "the only way"

    One is planning to send tiny spacecrafts to the nearest stellar system; the other aims to bring the power of the stars to Earth. Yuri Milner, Russian-born entre [...]

    Read more

  • Cryogenics | How low can you go?

    The realm of the extremely cold is fascinating. Temperatures driving toward absolute zero, 'steaming' cryogenic liquids and hovering magnets create an air of ma [...]

    Read more

  • Stakeholders | Europe's vote of confidence

    The bottom line is always what matters. For the statement issued on Thursday 12 April by the European Council of Ministers, the key phrase was in the final poin [...]

    Read more

Of Interest

See archived articles

India successfully tests power supplies for heating system

Indian Domestic Agency

A 3 MW radio frequency high voltage power supply has been successfully operated at ITER parameters. Procurement can begin in India for the ITER ion cyclotron resonance heating power supplies. (Click to view larger version...)
A 3 MW radio frequency high voltage power supply has been successfully operated at ITER parameters. Procurement can begin in India for the ITER ion cyclotron resonance heating power supplies.
Ion cyclotron resonance heating (ICRH) is one of three external heating systems that ITER will rely on to bring the plasma to fusion temperatures.

Radio waves at specific frequencies (40-55 Mhz) are generated by radio frequency sources, moved along massive transmission lines to two 45-tonne launchers, and finally transferred into the plasma through ports in the vacuum vessel. ICRH heating will deliver 20 MW of heating power into the ITER machine.

A team in India is overseeing the procurement of nine radio frequency sources for the ITER ICRH heating system and corresponding high voltage power supplies. At a dedicated R&D laboratory in Gandhinagar, work is underway to demonstrate the requirements for ITER deliverables, including a development program for a 2.5 MW radio frequency amplifier.

In recent news, a 3 MW dual output high voltage power supply system supplied by contractor ECIL (Electronics Corporation of India Limited) was successfully operated at ITER parameters. The layout of the system was chosen to mimic the exact configuration that will be used at ITER, with a pair of cast resin multi-secondary transformers place at ground level and the electronics at mezzanine levels. Interconnecting cables are routed through high voltage feedthroughs on the upper floor.


The team in front of the power cubicles at the dedicated lab in Gandhinagar: Dishang Upadhyay, Rasesh Dave, Thibault Gassmann, Amit Patel, Hitesh Dhola, Niranjan Goswami and Kush Mehta. (Click to view larger version...)
The team in front of the power cubicles at the dedicated lab in Gandhinagar: Dishang Upadhyay, Rasesh Dave, Thibault Gassmann, Amit Patel, Hitesh Dhola, Niranjan Goswami and Kush Mehta.
The high voltage power supply was operated continuously and successfully, delivering 2.8 MW of output power to drive 1.5 MW diacrode-based amplifiers on matched and mismatched loads.

These successful results will allow the Indian Domestic Agency to begin the procurement of power supplies for the ITER ICRH system.


return to the latest published articles