Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • WEST | Revamped tokamak completes 1st phase of operation

    One day, in the latter half of this decade, it will be routine at ITER: dozens of operators, with eyes riveted to their individual monitors as numbers, graphs a [...]

    Read more

  • Roof modules | Patience, precision and a crane's long arm

    In the spring of 2020 a new and strategic phase of ITER construction will begin: the assembly of the ITER Tokamak. In order to deliver machine components to the [...]

    Read more

  • Image of the week | "Bringing light and hope"

    Most international organizations are headquartered in large cities—the UN in New York, UNESCO and the International Energy Agency in Paris, the IAEA in Vienna, [...]

    Read more

  • Outreach in China | A week devoted to fusion

    A new biennial event in China seeks to create a comprehensive exchange platform for the scientists, engineers and industries that are driving the country's stro [...]

    Read more

  • Monaco-ITER Fellows | New campaign announced

    The seventh recruitment campaign for the Monaco-ITER postdoctoral fellowship program opens on 13 January. Since 2008, thirty postdocs have carried out origin [...]

    Read more

Of Interest

See archived entries

India successfully tests power supplies for heating system

Indian Domestic Agency

A 3 MW radio frequency high voltage power supply has been successfully operated at ITER parameters. Procurement can begin in India for the ITER ion cyclotron resonance heating power supplies. (Click to view larger version...)
A 3 MW radio frequency high voltage power supply has been successfully operated at ITER parameters. Procurement can begin in India for the ITER ion cyclotron resonance heating power supplies.
Ion cyclotron resonance heating (ICRH) is one of three external heating systems that ITER will rely on to bring the plasma to fusion temperatures.

Radio waves at specific frequencies (40-55 Mhz) are generated by radio frequency sources, moved along massive transmission lines to two 45-tonne launchers, and finally transferred into the plasma through ports in the vacuum vessel. ICRH heating will deliver 20 MW of heating power into the ITER machine.

A team in India is overseeing the procurement of nine radio frequency sources for the ITER ICRH heating system and corresponding high voltage power supplies. At a dedicated R&D laboratory in Gandhinagar, work is underway to demonstrate the requirements for ITER deliverables, including a development program for a 2.5 MW radio frequency amplifier.

In recent news, a 3 MW dual output high voltage power supply system supplied by contractor ECIL (Electronics Corporation of India Limited) was successfully operated at ITER parameters. The layout of the system was chosen to mimic the exact configuration that will be used at ITER, with a pair of cast resin multi-secondary transformers place at ground level and the electronics at mezzanine levels. Interconnecting cables are routed through high voltage feedthroughs on the upper floor.


The team in front of the power cubicles at the dedicated lab in Gandhinagar: Dishang Upadhyay, Rasesh Dave, Thibault Gassmann, Amit Patel, Hitesh Dhola, Niranjan Goswami and Kush Mehta. (Click to view larger version...)
The team in front of the power cubicles at the dedicated lab in Gandhinagar: Dishang Upadhyay, Rasesh Dave, Thibault Gassmann, Amit Patel, Hitesh Dhola, Niranjan Goswami and Kush Mehta.
The high voltage power supply was operated continuously and successfully, delivering 2.8 MW of output power to drive 1.5 MW diacrode-based amplifiers on matched and mismatched loads.

These successful results will allow the Indian Domestic Agency to begin the procurement of power supplies for the ITER ICRH system.


return to the latest published articles