Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Plasma physics | Be clean, be strong

    To achieve maximum fusion efficiency in a tokamak device it is essential to limit the impurities in the plasma. But this can be a challenge, as interaction betw [...]

    Read more

  • Coil power supply | Switching network tested in Russia

    Plasma could not be created in the ITER vacuum vessel without switching network units, whose operation creates the voltage that 'ionizes*' the cloud of fuel ato [...]

    Read more

  • Star struck | For Silicon Valley philanthropist ITER is "the only way"

    One is planning to send tiny spacecrafts to the nearest stellar system; the other aims to bring the power of the stars to Earth. Yuri Milner, Russian-born entre [...]

    Read more

  • Cryogenics | How low can you go?

    The realm of the extremely cold is fascinating. Temperatures driving toward absolute zero, 'steaming' cryogenic liquids and hovering magnets create an air of ma [...]

    Read more

  • Stakeholders | Europe's vote of confidence

    The bottom line is always what matters. For the statement issued on Thursday 12 April by the European Council of Ministers, the key phrase was in the final poin [...]

    Read more

Of Interest

See archived articles

Merry plasmas!

On 14 December, at 6:03 p.m., a flash of light illuminated the vacuum vessel of WEST, the rejuvenated Tore Supra tokamak designed to serve as a test bench for ITER.

Operational since 1988, the CEA-Euratom tokamak Tore Supra underwent a major transformation and became WEST (W Environment in Steady-state Tokamak), a test bench for ITER. The machine produced its first plasma on 14 December. (Click to view larger version...)
Operational since 1988, the CEA-Euratom tokamak Tore Supra underwent a major transformation and became WEST (W Environment in Steady-state Tokamak), a test bench for ITER. The machine produced its first plasma on 14 December.
This first plasma rewarded four years of hard work that involved stripping out the 30-year-old machine, adding magnetic coils to confine the originally circular plasma into a "D shape," and trading its carbon-carbon fibre (CFC) "limiter" for an ITER-like tungsten divertor.

Operators at the French Institute for Magnetic Fusion Research (IRFM) are now confident that they can move forward to the first experimental campaign, set to be launched in March 2017. The first phase of the campaign will explore heat load patterns and H mode transition; the second in October-December 2017 will focus on testing plasma-facing components under the high heat loads of ITER-grade plasmas.

On that very same day, Korea's National Fusion Research Institute (NFRI) announced that the KSTAR tokamak had achieved a record 70-second H-mode plasma. (Click to view larger version...)
On that very same day, Korea's National Fusion Research Institute (NFRI) announced that the KSTAR tokamak had achieved a record 70-second H-mode plasma.
On the very same day that the IRFM team was (discreetly) celebrating WEST's first plasma, another team, at the other end of the world, also had an achievement to announce: a record 70-second H-mode plasma had just been recorded by the Korean superconducting tokamak KSTAR.

One month earlier, in mid-November, the Chinese tokamak EAST had achieved a similar but slightly shorter 60-second steady-state high energy plasma.


return to the latest published articles