Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Summer postcards from the ITER worksite

    The latest harvest of ITER construction photos may be taken from the same point—the tallest crane on site—but there is always an abundance of new detail to be g [...]

    Read more

  • The ring fortress

    ITER'ssteel-and-concretebioshield has become the definingfeature of Tokamak Complex construction. Twolevels only remain to be poured (out of six). It is a 'rin [...]

    Read more

  • The wave factory

    A year ago, work was just beginning on the steel reinforcement for the building's foundation slab. The Radio Frequency Heating Building is now nearing the last [...]

    Read more

  • It's all happening inside

    Since the giant poster was added to the Assembly Hall's completed exterior in June 2016 the building has lookedfrom afar like a finished project. Butinside, tea [...]

    Read more

  • Along skid row

    They look like perfectly aligned emergency housing units. But of course they're not: the 18 concrete structures in the ITER cryoplant are massive pads that will [...]

    Read more

Of Interest

See archived articles

An unconventional approach to fusion

-R.A.

There's no easy road to fusion. Whether one travels the large route forged by six decades of research on hundreds of machines, or whether one tries to open a way through uncharted and exotic territory, difficulties abound and challenges loom large.

General Fusion's approach is quite exotic: no vacuum vessel in their planned fusion machine but a spherical tank filled with a liquid lead-lithium mixture spun into a vortex; no giant superconducting magnet system to confine the plasma but an array of pistons to compress it by way of a powerful shock wave... (Click to view larger version...)
General Fusion's approach is quite exotic: no vacuum vessel in their planned fusion machine but a spherical tank filled with a liquid lead-lithium mixture spun into a vortex; no giant superconducting magnet system to confine the plasma but an array of pistons to compress it by way of a powerful shock wave...
Over the past few years, several private sector startups have raised enough capital to launch their scientists and engineers into the race to harness fusion power. Tri Alpha Energy and Helion Energy in the US; Tokamak Energy and First Light Fusion in the UK; General Fusion in Canada and scores of others ... all claim they can deliver within the coming decade.

How they can succeed with a few tens or hundreds of million dollars in investment and a workforce that rarely exceeds a few dozen specialists is an open question—one that everyone present in the ITER amphitheatre on Monday 23 January had in mind.

The guest that day was physicist Michel Laberge, founder and chief scientist of General Fusion, the company that boasts it is ─ in the present tense ─ "transforming the world's energy supply with clean, safe and abundant fusion energy".

There is a world, of course, between the claim inscribed on the opening page of General Fusion's website and the present status of the company's research and experimentation. Facing a receptive and curious audience of fusion specialists, Laberge didn't seek to minimize the technical challenges his company is facing.

For anybody familiar with magnetic fusion and tokamaks, General Fusion's approach is quite exotic: no vacuum vessel in their planned fusion machine but a spherical tank filled with a liquid lead-lithium mixture spun into a vortex; no giant superconducting magnet system to confine the plasma but an array of pistons to compress it by way of a powerful shock wave...

Physicist Michel Laberge, founder and chief scientist of General Fusion, didn't seek to minimize the technical challenges his company is facing. (Click to view larger version...)
Physicist Michel Laberge, founder and chief scientist of General Fusion, didn't seek to minimize the technical challenges his company is facing.
The concept, called "magnetized target fusion" originated in the mid-1970s. It combines features of magnetic confinement fusion (like in ITER and other tokamaks) and inertial confinement fusion (like in the US National Ignition Facility or the French Laser Mégajoule).

"We aim to do fusion somewhere in the middle ground," said Laberge in his introduction. Supported by detailed graphs, high-speed videos and precise figures, his presentation and the ensuing exchanges were highly technical and at no moment was there any hint of condescendence or irony—from either side of the podium.

The encounter between the largest science project on the planet and a small, determined startup in western Canada, demonstrated that, at the end of the day, the fusion community—dreamers, explorers, experimenters—is really just one.


return to the latest published articles