Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Local partners | A celebration for ITER's "vital artery"

    ITER is made possible through the work of thousands of scientists, engineers, workers of all trades and industries across the globe. It is also made possible by [...]

    Read more

  • Photo reportage | Travelling with a coil

    From the salt marshes of the inland sea Étang-de-Berre to the rolling hills around the ITER site (with a view of some of the highest alpine summits) an ITER con [...]

    Read more

  • Image of the week | Shiny steel and sharp edges

    All shiny steel, sharp edges and perfectly machined penetrations and grooves, two toroidal field coils are being prepared for the pre-assembly process. The sp [...]

    Read more

  • Vacuum vessel sector #6 | On its way

    A 440-tonne, 40-degree sector of the ITER vacuum vessel left Busan, Korea, on Sunday 28 June. A unique component has taken to the sea—one that was more than t [...]

    Read more

  • Top management | Keun-Kyeong Kim, Head of Construction

    In the small Korean village (25 houses!) where Keun-Kyeong Kim spent the first eight years of his life, there was no electricity— just batteries to power transi [...]

    Read more

Of Interest

See archived entries

An unconventional approach to fusion

R.A.

There's no easy road to fusion. Whether one travels the large route forged by six decades of research on hundreds of machines, or whether one tries to open a way through uncharted and exotic territory, difficulties abound and challenges loom large.

General Fusion's approach is quite exotic: no vacuum vessel in their planned fusion machine but a spherical tank filled with a liquid lead-lithium mixture spun into a vortex; no giant superconducting magnet system to confine the plasma but an array of pistons to compress it by way of a powerful shock wave... (Click to view larger version...)
General Fusion's approach is quite exotic: no vacuum vessel in their planned fusion machine but a spherical tank filled with a liquid lead-lithium mixture spun into a vortex; no giant superconducting magnet system to confine the plasma but an array of pistons to compress it by way of a powerful shock wave...
Over the past few years, several private sector startups have raised enough capital to launch their scientists and engineers into the race to harness fusion power. Tri Alpha Energy and Helion Energy in the US; Tokamak Energy and First Light Fusion in the UK; General Fusion in Canada and scores of others ... all claim they can deliver within the coming decade.

How they can succeed with a few tens or hundreds of million dollars in investment and a workforce that rarely exceeds a few dozen specialists is an open question—one that everyone present in the ITER amphitheatre on Monday 23 January had in mind.

The guest that day was physicist Michel Laberge, founder and chief scientist of General Fusion, the company that boasts it is ─ in the present tense ─ "transforming the world's energy supply with clean, safe and abundant fusion energy".

There is a world, of course, between the claim inscribed on the opening page of General Fusion's website and the present status of the company's research and experimentation. Facing a receptive and curious audience of fusion specialists, Laberge didn't seek to minimize the technical challenges his company is facing.

For anybody familiar with magnetic fusion and tokamaks, General Fusion's approach is quite exotic: no vacuum vessel in their planned fusion machine but a spherical tank filled with a liquid lead-lithium mixture spun into a vortex; no giant superconducting magnet system to confine the plasma but an array of pistons to compress it by way of a powerful shock wave...

Physicist Michel Laberge, founder and chief scientist of General Fusion, didn't seek to minimize the technical challenges his company is facing. (Click to view larger version...)
Physicist Michel Laberge, founder and chief scientist of General Fusion, didn't seek to minimize the technical challenges his company is facing.
The concept, called "magnetized target fusion" originated in the mid-1970s. It combines features of magnetic confinement fusion (like in ITER and other tokamaks) and inertial confinement fusion (like in the US National Ignition Facility or the French Laser Mégajoule).

"We aim to do fusion somewhere in the middle ground," said Laberge in his introduction. Supported by detailed graphs, high-speed videos and precise figures, his presentation and the ensuing exchanges were highly technical and at no moment was there any hint of condescendence or irony—from either side of the podium.

The encounter between the largest science project on the planet and a small, determined startup in western Canada, demonstrated that, at the end of the day, the fusion community—dreamers, explorers, experimenters—is really just one.


return to the latest published articles