Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Deliveries | A third magnet ready for transport to ITER

    Three ITER magnets are now in transit to ITER from different points on the globe—two toroidal field magnets and one poloidal field coil. In terms of component w [...]

    Read more

  • Heaviest load yet | Europe's coil soon to hit the road

    It's big, it's heavy, it's precious and it's highly symbolic: the toroidal field coil that was unloaded at Marseille industrial harbour on 17 March is the most [...]

    Read more

  • Russia's ring coil | Entering the final sequence

    The smallest of ITER's poloidal field coils is entering the final sequence in a long series of activities that transform cable-in-conduit superconductor into a [...]

    Read more

  • Coping with COVID | Adjusting to maintain progress

    COVID-19 needs no introduction. But for a 35-country collaboration like ITER, the dramatic worldwide spread of the virus has introduced an entirely new set of c [...]

    Read more

  • United States | A roadmap to fusion energy

    Hundreds of scientists across the United States—representing a broad range of national labs, universities, and private ventures—have collaborated to produce A C [...]

    Read more

Of Interest

See archived entries

And now, it's for keeps!

R.A.

At first view, nothing distinguishes the current operations in the Poloidal Field Coils Winding Facility from those that got underway last November: steel-jacketed conductor is being unspooled, straightened, cleaned, bent to the correct angle, and wrapped with layers of insulating tape ... technicians in white lab coats are carefully performing dimensional checks ... and there is the same machine hum and flash of orange lights.

The real thing—production winding—has started for poloidal field coil #5. In this on-site facility at ITER, Europe will produce the four largest poloidal field coils. (Click to view larger version...)
The real thing—production winding—has started for poloidal field coil #5. In this on-site facility at ITER, Europe will produce the four largest poloidal field coils.
Although invisible to the eye, the difference is nonetheless essential—this time it is not "dummy" conductor on the winding table but the actual niobium-titanium (Nb-Ti) superconductor for poloidal field coil #5 (PF5). Measuring 17 metres in diameter, PF5 will be the second ring coil to take its place in the Tokamak assembly sequence, just above the smaller poloidal field coil #6.

The difference lies in the heart of the steel-jacketed component. In the dummy conductor, the strands were one hundred percent copper. This less-expensive material—which respected the actual dimensions of the true conductor—was a good choice for qualifying the production line; contractors used it to first produce a semi-winding (four turns) and then a full two-layer dummy double pancake.

In the actual conductor, the strands consist of a mix of copper and of the superconducting alloy niobium-titanium. Four poloidal field coils (out of the six needed for the machine), will be manufactured by Europe in the Poloidal Field Coils Winding Facility. With diameters of 17 to 24 metres and weights ranging from 200 to 400 tonnes, these impressive components will require approximately 18 months each to manufacture.

Two smaller ring coils, with diameters of approximately 8 metres, are in production now in Russia and China.

See a recent report from the European Domestic Agency on fabrication activities for poloidal field coils #5 and #6 here.


return to the latest published articles