Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Image of the week | More cladding and a new message

    As the October sun sets on the ITER worksite, the cladding of the neutral beam power buildings takes on a golden hue. One after the other, each of the scientifi [...]

    Read more

  • Cryodistribution | Cold boxes 20 years in the making

    Twenty years—that is how long it took to design, manufacture and deliver the cold valve boxes that regulate the flow of cryogens to the tokamak's vacuum system. [...]

    Read more

  • Open Doors Day | Face to face with ITER immensity

    In October 2011, when ITER organized its first 'Open Doors Day,' there was little to show and much to leave to the public's imagination: the Poloidal Field [...]

    Read more

  • Fusion | Turning neutrons into electricity

    How will the power generated by nuclear fusion reactions be converted into electricity? That is not a question that ITER has been designed to answer explicitly, [...]

    Read more

  • Fusion world | JET completes a storied 40-year run

    In its final deuterium-tritium experimental campaign, Europe's JET tokamak device demonstrated plasma scenarios that are expected on ITER and future fusion powe [...]

    Read more

Of Interest

See archived entries

Central solenoid feels the heat

The first of six independent magnets for ITER's central solenoid has successfully passed the heat treatment phase, which ultimately creates the solenoid's superconducting material. This milestone was reached in April at General Atomics (US), after the 110-tonne module spent just over ten days at 570 °C and another four at 650 °C.

The heat treatment furnace at General Atomics can accept one central solenoid module at a time. During a month-long process, heat treatment reacts niobium and tin to form the superconducting alloy Nb3Sn. (Click to view larger version...)
The heat treatment furnace at General Atomics can accept one central solenoid module at a time. During a month-long process, heat treatment reacts niobium and tin to form the superconducting alloy Nb3Sn.
Heat treatment is the fabrication step during which the niobium and tin are reacted together to form the superconducting Nb3Sn alloy. The furnace—which is 12 metres tall when opened, with a diameter of 5.5 metres—holds one module at a time.

Temperatures are increased very progressively, maintained, then decreased progressively in a process that maintains the uniform "cooking" of the module.

"The heat treatment is what ultimately creates the solenoid's superconducting material, and completion of this process demonstrates that we are continuing to make good, consistent progress on this project," said John Smith, program manager for General Atomics.

The central solenoid magnet is formed from six individual coil modules stacked vertically within a "cage" of supporting structures.

At a facility in Poway, California, the US contractor General Atomics is currently overseeing fabrication activity at several points along its manufacturing line. While the first production module passes from the heat treatment station to the turn insulation station, teams are already joining the conductor sections of the second module. Finally the qualification coil—used to validate all processes and tooling in advance of series production—has entered the final test station.

See the full press release from General Atomics.


return to the latest published articles