Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Neutral beam power | "Outside and beyond anything"

    In an empty plot on the ITER platform, preparatory works have started for the construction of two new buildings. From the outside, they will look like ordinary [...]

    Read more

  • Systems installation | Anticipation and flexibility

    It is a subterranean world of scaffolding and supports, piping and cables, concrete and embedded plates. To the untrained eye, the activity underway in the base [...]

    Read more

  • Image of the week | Keeping an eye on the hot (double) pancake

    An ITER ring-shaped coil begins its existence as cable-in-conduit conductor, wound into 'double pancakes' that are eventually stacked one upon the other to form [...]

    Read more

  • Cryostat thermal shield | A "strong back" for a fragile component

    The lower cylinder thermal shield is a large silver-plated component, circular in shape and five metres tall, which fits inside the depression in the cryostat b [...]

    Read more

  • Diagnostic shielding | B4C ceramic bricks prove their worth

    A number of materials can effectively shield diagnostic equipment from the neutron flux coming from the plasma. To find the best one, the diagnostics team at IT [...]

    Read more

Of Interest

See archived entries

Central solenoid feels the heat

The first of six independent magnets for ITER's central solenoid has successfully passed the heat treatment phase, which ultimately creates the solenoid's superconducting material. This milestone was reached in April at General Atomics (US), after the 110-tonne module spent just over ten days at 570 °C and another four at 650 °C.

The heat treatment furnace at General Atomics can accept one central solenoid module at a time. During a month-long process, heat treatment reacts niobium and tin to form the superconducting alloy Nb3Sn. (Click to view larger version...)
The heat treatment furnace at General Atomics can accept one central solenoid module at a time. During a month-long process, heat treatment reacts niobium and tin to form the superconducting alloy Nb3Sn.
Heat treatment is the fabrication step during which the niobium and tin are reacted together to form the superconducting Nb3Sn alloy. The furnace—which is 12 metres tall when opened, with a diameter of 5.5 metres—holds one module at a time.

Temperatures are increased very progressively, maintained, then decreased progressively in a process that maintains the uniform "cooking" of the module.

"The heat treatment is what ultimately creates the solenoid's superconducting material, and completion of this process demonstrates that we are continuing to make good, consistent progress on this project," said John Smith, program manager for General Atomics.

The central solenoid magnet is formed from six individual coil modules stacked vertically within a "cage" of supporting structures.

At a facility in Poway, California, the US contractor General Atomics is currently overseeing fabrication activity at several points along its manufacturing line. While the first production module passes from the heat treatment station to the turn insulation station, teams are already joining the conductor sections of the second module. Finally the qualification coil—used to validate all processes and tooling in advance of series production—has entered the final test station.

See the full press release from General Atomics.


return to the latest published articles