Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Top management | ITER Council appoints new Director-General

    Convening in an extraordinary session in Paris, the ITER Council has appointed Pietro Barabaschi as the next Director-General of the ITER Organization. Mr Barab [...]

    Read more

  • On site | Open Doors for ITER families

    In a first at ITER, the gates of the monumental worksite opened on Saturday 17 September for a family-only Open Doors Day event, reserved for the families of st [...]

    Read more

  • Manufacturing | Russia ships four gyrotron sets

    Twenty-four electromagnetic wave generators called gyrotrons are at the heart of electron cyclotron resonance heating—the system on ITER that will ini [...]

    Read more

  • Fusion world | Science to resume at Wendelstein 7-X

    Improved equipment on Wendelstein 7-X will permit the stellarator device to achieve new scientific heights in a campaign planned to begin this autumn. Science a [...]

    Read more

  • ITER International School | On operation scenarios and control

    The 11th ITER International School concluded successfully in San Diego, USA, on 29 July after five days of lectures and discussions on the development of tokama [...]

    Read more

Of Interest

See archived entries

Central solenoid feels the heat

The first of six independent magnets for ITER's central solenoid has successfully passed the heat treatment phase, which ultimately creates the solenoid's superconducting material. This milestone was reached in April at General Atomics (US), after the 110-tonne module spent just over ten days at 570 °C and another four at 650 °C.

The heat treatment furnace at General Atomics can accept one central solenoid module at a time. During a month-long process, heat treatment reacts niobium and tin to form the superconducting alloy Nb3Sn. (Click to view larger version...)
The heat treatment furnace at General Atomics can accept one central solenoid module at a time. During a month-long process, heat treatment reacts niobium and tin to form the superconducting alloy Nb3Sn.
Heat treatment is the fabrication step during which the niobium and tin are reacted together to form the superconducting Nb3Sn alloy. The furnace—which is 12 metres tall when opened, with a diameter of 5.5 metres—holds one module at a time.

Temperatures are increased very progressively, maintained, then decreased progressively in a process that maintains the uniform "cooking" of the module.

"The heat treatment is what ultimately creates the solenoid's superconducting material, and completion of this process demonstrates that we are continuing to make good, consistent progress on this project," said John Smith, program manager for General Atomics.

The central solenoid magnet is formed from six individual coil modules stacked vertically within a "cage" of supporting structures.

At a facility in Poway, California, the US contractor General Atomics is currently overseeing fabrication activity at several points along its manufacturing line. While the first production module passes from the heat treatment station to the turn insulation station, teams are already joining the conductor sections of the second module. Finally the qualification coil—used to validate all processes and tooling in advance of series production—has entered the final test station.

See the full press release from General Atomics.


return to the latest published articles