The physics behind the transition to H-mode

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Augmented reality | Assessing the future work environment

    As part of their collaboration within the Site Support Agreement*, ITER and its neighbour CEA are developing a novel approach to explore, analyze and assess the [...]

    Read more

  • Diagnostics and instrumentation | First welding on the vacuum vessel

    Beginning in 2035, ITER will open a window into "burning plasmas"—a state of matter that exists in the core of stars only. Observing, assessing and mo [...]

    Read more

  • Assembly | Machining workshop opens on site

    Construction of an on-site machining workshop began in December 2019 and was completed on schedule in September 2020.The new workshop will be operated by the D [...]

    Read more

  • Neutral Beam Test Facility | Power is ready for the prototype injector

    The European Domestic Agency has carried out successful site acceptance tests at the ITER Neutral Beam Test Facility on power supply equipment installed ov [...]

    Read more

  • In-vessel coils | First components arrive on site

    ITER has received the first shipments of mineral-insulated conductor for ITER's in-vessel coils. The first lengths are destined for winding and bending trials a [...]

    Read more

Of Interest

See archived entries

The physics behind the transition to H-mode

PPPL physicists Seung-Hoe Ku, Robert Hager, Choong-Seock Chang, and Randy Michael Churchill. (Photo by Elle Starkman) (Click to view larger version...)
PPPL physicists Seung-Hoe Ku, Robert Hager, Choong-Seock Chang, and Randy Michael Churchill. (Photo by Elle Starkman)
H‐mode—or the sudden improvement of plasma confinement in the magnetic field of tokamaks by approximately a factor of two—is the high confinement regime that all modern tokamaks, including ITER, rely on.

It was observed for the first time rather by accident (read more here) and to this day the physics behind H-mode remains not fully understood.

Scientists at the Princeton Plasma Physics Laboratory (PPPL) in the US have made a step in the direction of elucidating the phenomenon by simulating, for the first time, the spontaneous transition of turbulence at the edge of a fusion plasma to H-mode.
The research was achieved with the extreme-scale plasma turbulence code XGC developed at PPPL in collaboration with a nationwide team. This massively parallel simulation, which reveals the physics behind the transition, utilized most of a supercomputer's power—running for three days and using 90 percent of the capacity of Titan at the Oak Ridge Leadership Computing Facility (the most powerful supercomputer for open science in the US).

"After 35 years, the fundamental physics of the bifurcation of turbulence into H-mode has now been simulated, thanks to the rapid development of the computational hardware and software capability," said C.S. Chang, first author of the April Physical Review Letters paper [118, 175001 (2017)] that reported the findings. Co-authors included a team from PPPL, the University of California, San Diego, and the MIT Plasma Science and Fusion Center. Seung-Hoe Ku of PPPL performed the simulation.

Read the full report by John Greenwald on the PPPL website.



return to the latest published articles