Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Data | Archiving 20 gigabytes per second—and making it usable

    One of the main deliverables of ITER is the data itself—and there will be a tremendous amount of it to store and analyze. During First Plasma, the highest produ [...]

    Read more

  • Electrical tests | High voltage, high risk

    In the southern part of the construction platform, a one-hectare yard hosts some of the strangest-looking components of the entire ITER installation. Rows of to [...]

    Read more

  • Vacuum vessel | First sector safely docked

    It was 8:00 p.m. on Tuesday 6 April and something quite unusual happened in the ITER Assembly Hall: applause spontaneously erupted from the teams that h [...]

    Read more

  • Remote ITER Business Meeting | Virtual interaction, tangible opportunities

    While the advent of Covid-19 has not stopped the relentless advancement of the ITER Project, it has certainly prompted ingenuity in how ITER conducts its work. [...]

    Read more

  • Manufacturing | Europe completes pre-compression rings

    The French company CNIM (Toulon) has produced a tenth pre-compression ring for the ITER Project on behalf of Fusion for Energy, the European Domestic Agency. Th [...]

    Read more

Of Interest

See archived entries

Vacuum vessel

Windows with tailored appendages

Each of the vacuum vessel's 44 openings will have custom-made "extensions" to create the junction to the cryostat. The first link in the two-part chain—the port stub extension—will be welded to the vacuum vessel sectors before they are shipped from their manufacturing locations; (the second, port extensions, will be added during assembly on site). The first port stub extension is on its way now to Korea.  

Although small compared to the vacuum vessel itself, these custom-made components are impressive when you consider that they will be welded to all of the upper and lower port stubs of the ITER vacuum vessel. The stub extension for port #12 weighs more than 17 tonnes and measure 4 metres x 2.5 metres, for 3.4 metres in length. (Click to view larger version...)
Although small compared to the vacuum vessel itself, these custom-made components are impressive when you consider that they will be welded to all of the upper and lower port stubs of the ITER vacuum vessel. The stub extension for port #12 weighs more than 17 tonnes and measure 4 metres x 2.5 metres, for 3.4 metres in length.
Another ITER component has taken to the sea, heading to the shores of South Korea. Its destination? Hyundai Heavy Industries—principal contractor to the Korean Domestic Agency for the manufacture of Korea's portion of the ITER vacuum vessel. Manufacturing is at an advanced stage there for vacuum vessel sector #6—the first sector scheduled to reach ITER. The port stub extension shipped last week will be welded to its upper port stub.

Port structures will create the junction between the vacuum vessel and the cryostat. The first of these—stub extensions—are shown at upper port level in the above diagram. These stub extensions will be prolonged by port extensions (not shown) during in-pit assembly at ITER. (Click to view larger version...)
Port structures will create the junction between the vacuum vessel and the cryostat. The first of these—stub extensions—are shown at upper port level in the above diagram. These stub extensions will be prolonged by port extensions (not shown) during in-pit assembly at ITER.
The port stub extensions, which are an integral part of the ITER vacuum vessel, will be welded to all the openings (or "ports") at lower and upper levels. The upper stub extensions are characterized by a trapezoidal/rectangular cross-section. Although they appear small compared to the vacuum vessel itself, these custom-made components weigh upwards of 17 tonnes and measure 4 metres x 2.5 metres, for 3.4 metres in length.

As part of the vacuum vessel, the stub extensions are subject to French regulations on pressure equipment (ESPN). "Achieving water pressure tightness was one of the main design criteria for this challenging component," says Yuri Utin, from ITER's Vessel Division.  Last January, the stub extension for upper port #12 was able to demonstrate leak tightness in pressure tests up to 3.78 MPa for the 30 minutes required by regulations. The helium leak tests that followed were also successful, as witnessed by representatives of the ITER Vacuum group.

Other challenges included manufacturing to tolerances of < 6 mm (for a shell thickness of 60 mm and a double-shell construction thickness of up to 200 mm); achieving defect-free welding in the attachment of the numerous pipe stubs on the main bulkhead; and carrying out full volumetric and visual examination of these welds and other welded joints in a context of difficult access, according to Yuri.

At MAN Diesel & Turbo, in Deggendorf, Germany, the port stub extension for upper port #12 successfully passed pressure and helium leak tests. It left the factory mid-October for shipment to Korea. (Click to view larger version...)
At MAN Diesel & Turbo, in Deggendorf, Germany, the port stub extension for upper port #12 successfully passed pressure and helium leak tests. It left the factory mid-October for shipment to Korea.
The manufacturing of the first upper port stub extension is part of the more global procurement of the upper ports under the responsibility of the Russian Domestic Agency.  Its main supplier for all upper ports, the Efremov Institute in Saint Petersburg, is responsible for contracting out to procure the specific austenitic stainless steel required, performing structural and other analyses, checking and approving the manufacturing design, and controlling the manufacturing progress. The German company MAN Diesel & Turbo, based in Deggendorf, Lower Bavaria, was chosen to be the main sub-supplier for the manufacturing design and fabrication.

Once the port stub for upper port #12 reaches Korea, it will have to pass site acceptance tests in the presence of representatives of the Korean and Russian Domestic Agencies and representatives of the ITER Organization.


return to the latest published articles