Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • FEC 2020 | E-conference opens, participation never higher

    The 28th IAEA Fusion Energy Conference (FEC) is off to an auspicious start. Open to the public for the first time thanks to the technical possibilities of an al [...]

    Read more

  • Vacuum vessel in Europe | Fitting the pieces virtually

    A 'virtual fit' tool developed by the European Domestic Agency is helping the vacuum vessel manufacturing team anticipate the challenge of final assembly—the mo [...]

    Read more

  • Gas injection system | Last manifolds completed in China

    Contractors to the Chinese Domestic Agency have completed an important part of the gas injection system—the distribution manifolds that carry gas species from t [...]

    Read more

  • Magnets | Seventh vertical coil reaches ITER

    Seven toroidal field coils have reached ITER in the past year. The latest, TF3 from Europe, passed through the ITER gates on Friday 3 May. The European and Japa [...]

    Read more

  • Tritium Building | Work resumes

    The energy-producing plasmas in ITER will be fuelled in equal measure by the hydrogen isotopes deuterium and tritium. Deuterium is a stable element that industr [...]

    Read more

Of Interest

See archived entries

Taking the electrons' temperature

In ITER, scientists will use over 50 diagnostic systems to accurately "read" the plasma and furnish information that is important to its control, evaluation and optimization. All seven ITER Domestic Agencies are involved in the development and procurement of these systems, some of which will have to be installed and operational at the time of the project's First Plasma in 2025.

Unboxed, installed, tested and ready for experiments: the prototype Fourier Transform Spectrometer at the ITER India lab. (Click to view larger version...)
Unboxed, installed, tested and ready for experiments: the prototype Fourier Transform Spectrometer at the ITER India lab.
As part of its contributions to ITER diagnostics, the Indian Domestic Agency will be supplying several sub-systems of electron cyclotron emission (ECE) diagnostic systems, designed to measure local electron temperature with high spatial and temporal resolution. One of these—a Fourier Transform Spectrometer—will be used in particular to measure the power loss from the ITER plasma due to ECE radiation and to study the non-thermal electrons in the plasma.

R&D and experimental activities are currently underway at a dedicated ITER India laboratory in Gandhinagar (western India). A prototype of the fast-scanning Fourier Transform Spectrometer (FTS), based on requirements specified by ITER India, was manufactured by Blue Sky Spectroscopy Inc., Canada. This prototype has been installed at the ITER India laboratory where post-installation acceptance tests have been carried out and found satisfactory.

Based on a polarizing Michelson interferometer (70-1000 GHz), this fast-scanning Fourier Transform Spectrometer also consists of a cryo-cooled, dual-channel Tera-Hertz radiation measurement detector system. Experiments will be carried out to test attenuation in transmission line components; the results obtained will be instrumental in providing input for the design of an ultra-wideband (70-1000 GHz) transmission line for the ITER ECE diagnostic system.


return to the latest published articles