Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • 31st ITER Council | Addressing challenges

    The project's governing body, the ITER Council, convened for the 31st time in its history on 16 and 17 November to evaluate the progress of construction, m [...]

    Read more

  • Machine assembly | Key components to be repaired

    When building a machine as large and as complex as ITER, difficulties and setbacks do not come as surprises—they are an integral part of manufacturing, assembli [...]

    Read more

  • Space management | Optimizing every square metre

    Building management is a constant challenge at ITER. The American statesman Ben Franklin is credited with saying that a successful organization requires 'a plac [...]

    Read more

  • Radio Frequency Building | Installing the first power supply sets

    When the plasma in the ITER vacuum vessel is fed sufficient power, the velocity that the particles acquire causes them to collide, fuse and generate considerabl [...]

    Read more

  • Fusion history | H-mode, the discovery that made ITER possible

    Forty years ago, the scientists in the ASDEX tokamak control room at the Max Planck Institute for Plasma Physics (IPP) in Germany sat up straight. Somethin [...]

    Read more

Of Interest

See archived entries

Taking the electrons' temperature

In ITER, scientists will use over 50 diagnostic systems to accurately "read" the plasma and furnish information that is important to its control, evaluation and optimization. All seven ITER Domestic Agencies are involved in the development and procurement of these systems, some of which will have to be installed and operational at the time of the project's First Plasma in 2025.

Unboxed, installed, tested and ready for experiments: the prototype Fourier Transform Spectrometer at the ITER India lab. (Click to view larger version...)
Unboxed, installed, tested and ready for experiments: the prototype Fourier Transform Spectrometer at the ITER India lab.
As part of its contributions to ITER diagnostics, the Indian Domestic Agency will be supplying several sub-systems of electron cyclotron emission (ECE) diagnostic systems, designed to measure local electron temperature with high spatial and temporal resolution. One of these—a Fourier Transform Spectrometer—will be used in particular to measure the power loss from the ITER plasma due to ECE radiation and to study the non-thermal electrons in the plasma.

R&D and experimental activities are currently underway at a dedicated ITER India laboratory in Gandhinagar (western India). A prototype of the fast-scanning Fourier Transform Spectrometer (FTS), based on requirements specified by ITER India, was manufactured by Blue Sky Spectroscopy Inc., Canada. This prototype has been installed at the ITER India laboratory where post-installation acceptance tests have been carried out and found satisfactory.

Based on a polarizing Michelson interferometer (70-1000 GHz), this fast-scanning Fourier Transform Spectrometer also consists of a cryo-cooled, dual-channel Tera-Hertz radiation measurement detector system. Experiments will be carried out to test attenuation in transmission line components; the results obtained will be instrumental in providing input for the design of an ultra-wideband (70-1000 GHz) transmission line for the ITER ECE diagnostic system.


return to the latest published articles