Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Diagnostics | Measuring the behaviour of fast ions in the plasma

    A diagnostic probe, called the "lost alpha monitor," is being carefully designed to measure the behaviour of escaping ions. The lost alpha monitor wil [...]

    Read more

  • Fusion fashion | A collision of worlds

    As Gabriela Hearst, the Creative Director of the fashion brand Chloé, is quick to tell you, she is very excited about hydrogen fusion. She had read about ITER a [...]

    Read more

  • Manufacturing | Cold valve boxes for the ITER cryopumps

    Eight sophisticated 'cold valve boxes' will regulate the forced flow of supercritical helium to the eight cryopumps of the ITER vacuum system. European contract [...]

    Read more

  • Fusion world | A helium campaign kicks off at JET

    After achieving record-breaking results on the Joint European Torus during 2021 experiments with the high-performance fuel mix of deuterium and tritium, EUROfus [...]

    Read more

  • Coil winding table | Seven years of faithful service

    In November 2015, workers from the European contractor Sea Alp Engineering, an Italian company based in Turin, began installing a large circular structure at th [...]

    Read more

Of Interest

See archived entries

Divertor

Heat flux in line with design basis

New research from the Princeton Plasma Physics Laboratory (PPPL) predicts that the maximum high heat flux from the ITER Tokamak can be handled by the ITER divertor—the component at the bottom of the machine that, in extracting heat and ash produced by the fusion reaction, withstands the highest surface heat loads of the machine.

The heat flux to be sustained by the ITER divertor targets is estimated at 10-20 MW/m²—or ten times the heat load of a spacecraft re-entering Earth's atmosphere. (Click to view larger version...)
The heat flux to be sustained by the ITER divertor targets is estimated at 10-20 MW/m²—or ten times the heat load of a spacecraft re-entering Earth's atmosphere.
Breaking with projections extrapolated from existing tokamaks that had suggested that the heat flux could be so narrow and concentrated as to damage the front-facing plates of the divertor and require frequent repair, an international team led by PPPL physicist C.S. Chang has painted a more positive picture.

Chang's team used the highly sophisticated XGC1 plasma turbulence computer simulation code developed at PPPL to create the new estimate. The simulation projected a width of 6 millimetres for the heat flux in ITER when measured in a standardized way among tokamaks, far greater than the less-than 1 millimetre width projected through use of experimental data.

Physicist C.S. Chang, from the Princeton Plasma Physics Laboratory. (Click to view larger version...)
Physicist C.S. Chang, from the Princeton Plasma Physics Laboratory.
The discrepancy between the experimental projections and simulation predictions stems from the fact that conditions inside ITER will be too different from those in existing tokamaks for the empirical predictions to be valid, according to Chang. Key differences include the behaviour of plasma particles within today's machines compared with the expected behaviour of particles in ITER. For example, while ions contribute significantly to the heat width in major worldwide facilities, turbulent electrons will play a greater role in ITER, rendering extrapolations unreliable.

Chang's team used basic physics principles, rather than empirical projections based on the data from existing machines, to derive the simulated wider prediction. The team first tested whether the code could predict the heat flux width produced in experiments on US tokamaks, and found the predictions to be valid.

Continue to the PPPL website for the complete article.


return to the latest published articles