Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cryolines | Another day, another spool

    Having wedged his body and equipment into the cramped space between the ceiling and the massive pipe, a worker is busy welding two cryolines spools. A few metre [...]

    Read more

  • Image of the week | Bearings unveiled

    The construction teams are in the last stages of preparing the Tokamak pit for the first major operation of ITER machine assembly: the lowering of the cryostat [...]

    Read more

  • Technology | Perfecting tritium breeding for DEMO and beyond

    While ITER will never breed tritium for its own consumption, it will test breeding blanket concepts—the tools and techniques that designers of future DEMO react [...]

    Read more

  • Fusion world | Japan and Europe complete the assembly of JT-60SA

    The JT-60SA fusion experiment in Naka, Japan, is designed to explore advanced plasma physics in support of the operation of ITER and next-phase devices. After s [...]

    Read more

  • Manufacturing | Thermal shield milestone in Korea

    Six years after the start of fabrication, Korean contractor SFA has completed the last 40° sector of vacuum vessel thermal shield. The stainless steel panels, c [...]

    Read more

Of Interest

See archived entries

Divertor

Heat flux in line with design basis

John Greenwald, Princeton Plasma Physics Laboratory

New research from the Princeton Plasma Physics Laboratory (PPPL) predicts that the maximum high heat flux from the ITER Tokamak can be handled by the ITER divertor—the component at the bottom of the machine that, in extracting heat and ash produced by the fusion reaction, withstands the highest surface heat loads of the machine.

The heat flux to be sustained by the ITER divertor targets is estimated at 10-20 MW/m²—or ten times the heat load of a spacecraft re-entering Earth's atmosphere. (Click to view larger version...)
The heat flux to be sustained by the ITER divertor targets is estimated at 10-20 MW/m²—or ten times the heat load of a spacecraft re-entering Earth's atmosphere.
Breaking with projections extrapolated from existing tokamaks that had suggested that the heat flux could be so narrow and concentrated as to damage the front-facing plates of the divertor and require frequent repair, an international team led by PPPL physicist C.S. Chang has painted a more positive picture.

Chang's team used the highly sophisticated XGC1 plasma turbulence computer simulation code developed at PPPL to create the new estimate. The simulation projected a width of 6 millimetres for the heat flux in ITER when measured in a standardized way among tokamaks, far greater than the less-than 1 millimetre width projected through use of experimental data.

Physicist C.S. Chang, from the Princeton Plasma Physics Laboratory. (Click to view larger version...)
Physicist C.S. Chang, from the Princeton Plasma Physics Laboratory.
The discrepancy between the experimental projections and simulation predictions stems from the fact that conditions inside ITER will be too different from those in existing tokamaks for the empirical predictions to be valid, according to Chang. Key differences include the behaviour of plasma particles within today's machines compared with the expected behaviour of particles in ITER. For example, while ions contribute significantly to the heat width in major worldwide facilities, turbulent electrons will play a greater role in ITER, rendering extrapolations unreliable.

Chang's team used basic physics principles, rather than empirical projections based on the data from existing machines, to derive the simulated wider prediction. The team first tested whether the code could predict the heat flux width produced in experiments on US tokamaks, and found the predictions to be valid.

Continue to the PPPL website for the complete article.


return to the latest published articles