Crown mockup | Answering questions 3D models can't

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • In-vessel coils | First components arrive on site

    ITER has received the first shipments of mineral-insulated conductor for ITER's in-vessel coils. The first lengths are destined for winding and bending trials a [...]

    Read more

  • Controlling divertor power fluxes in 3D | ITER Scientist Fellows make progress

    New research results open a path to an integrated solution for optimizing the control of stationary and transient power fluxes on ITER.   Tokamak plasmas [...]

    Read more

  • Cooperation | Canada returns to the table

    Canada, one of the early participants in ITER, is back in the project. On Thursday 15 October, Bernard Bigot, on behalf of the ITER Organization, and Assistant [...]

    Read more

  • Heat rejection basins | A massive fill-up

    When the ITER Tokamak begins producing burning plasmas and auxiliary systems are operating at full capacity, the amount of heat to be removed from the installat [...]

    Read more

  • Fusion world | Teaching teachers about fusion

    The possibility to visit three fusion facilities, all in one afternoon. Welcome to the new virtual world! More than 300 science teachers recently seized the opp [...]

    Read more

Of Interest

See archived entries

Crown mockup

Answering questions 3D models can't

R.A.

In some areas of the Tokamak Building the steel reinforcement is so dense and the arrangement of the bars so complex, that even the most detailed 3D models are not sufficient to demonstrate full constructability.

In order to demonstrate the full constructability of the massive structure (the ''crown'') that will support the machine, a 1:1 mockup is being erected on the ITER platform. (Click to view larger version...)
In order to demonstrate the full constructability of the massive structure (the ''crown'') that will support the machine, a 1:1 mockup is being erected on the ITER platform.
A 3D model certainly describes the position, dimension, relative angle and curvature of every steel bar needed in a construction with utmost precision. But there are important questions that a model cannot answer. What are the most efficient rebar installation sequences? Will there be enough moving room for the workers to insert the bars, manoeuver them into the right position, and tie the stirrups?

And the 3D model will provide no information on how the concrete will settle into the steel lattice.

This is why when things get particularly challenging, constructors choose to try their hand on a mockup. "A 1:1-size mockup provides the ultimate demonstration of constructability," explain Laurent Patisson and Armand Gjoklaj, from ITER's Civil Structural Architecture team. "It's all about learning and fine-tuning procedures."

Mockups for ITER construction are like everything at ITER—large and complex. Since work began on Tokamak Complex foundations seven years ago, mockups have been erected on three occasions: in 2013 for the building's supporting slab (B2); in 2015 for the bioshield; and now one for the "crown" that will support the combined mass (23,000 tonnes) of the machine's cryostat, vacuum vessel, magnet system and thermal shield. (Compared to the 2015 mockup, the present one includes more elements of the crown such as toroidal beams and circular wall.)

Construction of the latest mockup—which has a footprint of 50 m² and a height of 3 metres—began three months ago. Reproducing a 40-degree section of the crown, the mockup's dense lattice is created from 50-millimetre-thick steel bars, a breadth not encountered anywhere else in the Tokamak Complex.

The mockup will enable the Buildings Infrastructure and Power Supplies (BIPS) Project Team to demonstrate not only the feasibility of the rebar installation but also the penetration and placement of the concrete into the steel lattice.

The concrete's formulation for the crown ("C90") is also unique in the Tokamak Complex. It combines fluidity when poured and extreme "hardness" when settled.

Inside the mockup, the temperature during the hardening process will be regulated and homogenized by cooling water circulating inside of thin pipes¹ and monitored by sensors distributed throughout the structure.

In preparing for the actual construction of the crown, the BIPS Project Team feels confident but has decided to take no chances—the 1:1 mockup must deliver the final demonstration that, yes, it can be done.

(¹) Once the process is complete, the pipes will be filled with grouting.


return to the latest published articles