Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • ITER Council: project metrics confirm performance

    The governing body of the ITER Organization, the ITER Council, met for the twenty-first time on 15 and 16 November 2017 under the chairmanship of Won Namkung (K [...]

    Read more

  • COP 23 | Placing ITER on the global scene

    On the western bank of theRhine and not far from the seat of the UN Climate Change Secretariat, world leaders are discussing how to push ahead for international [...]

    Read more

  • Japan's MEXT Minister | Seeing is believing

    On 4 November, ITER received Yoshimasa Hayashi, the Japanese Minister of MEXT—the Ministry of Education, Culture, Sports, Science and Technology with oversight [...]

    Read more

  • Architect Engineer | ENGAGE receives prestigious award

    Since 2006, the French 'Grand Prix de l'Ingénierie' has recognized engineering projects and/or teams that are remarkable in terms of scope, innovation, complexi [...]

    Read more

  • Sub-assembly tools | One foot inside

    The twin Korean giants already have a foot inside the Assembly Hall—literally. The foot—or 'bottom inboard column' in ITER parlance—is a 4.4-metre-long steel [...]

    Read more

Of Interest

See archived articles

Cryostat

A true sense of size

R.A.

Just like a thermos provides the insulation to keep your coffee warm—or your water cold—the ITER cryostat raises a barrier around the superconducting magnets that limits the possibility of heat exchange with the outside environment.

In the Cryostat Workshop on site, two sections of the cryostat are now in assembly in tandem. Here, the team stands inside the ring of the lower cylinder, tier one (30 metres in diameter). An initial pass of the welding tools has all segments now joined; the second tier segments—en route now from India—will top the first, creating a 10-metre-high structure. (Click to view larger version...)
In the Cryostat Workshop on site, two sections of the cryostat are now in assembly in tandem. Here, the team stands inside the ring of the lower cylinder, tier one (30 metres in diameter). An initial pass of the welding tools has all segments now joined; the second tier segments—en route now from India—will top the first, creating a 10-metre-high structure.
Where coffee is concerned, the temperature gradient is small—even on a cold day, the beverage inside the thermos is only a few dozen degrees hotter (or colder) than the air outside. In ITER, the gradient is huge: with superconducting magnets cooled to a few degrees above absolute zero, the difference with the outside environment is in the range of 270 degrees Celsius.

Vacuum (an almost perfect insulator) is used in both a thermos and the ITER cryostat to provide insulation. In the first case, vacuum is sandwiched between the two "walls" of the container; in the second, the vessel itself—a ten-storey structure with a volume of 8,500 m³—is the vacuum chamber.

Part of the procurement responsibilities of India, the cryostat is being manufactured in 54 segments by Indian contractor Larsen & Toubro and shipped to the ITER Cryostat Workshop for assembly.

Over the past year and a half, we have seen the cryostat base take shape; now, work is underway simultaneously on the next section—the lower cylinder. Side by side, these components-in-progress give a true sense of the awesome size of the cryostat.

More on cryostat manufacturing here.


return to the latest published articles