Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Heating | A pinch of moondust in the ITER plasma

    One day in the distant future, fusion plants might be fuelled by helium 3—an isotope that is extremely scarce on Earth but reputed to be abundant on the Moon. B [...]

    Read more

  • Delivery | 2,000 km through canals, locks and tunnels

    When the thruway is closed, one takes the back roads. And when it's low-water season on the Rhine-Rhône canal, a barge leaving Switzerland for the Mediterranean [...]

    Read more

  • Monaco Fellows | A hand in shaping ITER

    For the sixth time, ITER is welcoming a group of five young researchers as part of the Monaco-ITER postdoctoral fellowship scheme. Working alongside experienced [...]

    Read more

  • On site | Drone survey on a perfect day

    There are days in winter when the skies over Provence are perfectly transparent. Snowy peaks 200 kilometres away appear close enough to be touched and farms, co [...]

    Read more

  • AAAS conference | ITER on the world science stage

    With more than 120,000 members globally, the American Association for the Advancement of Science (AAAS) is billed as the world's largest scientific society. The [...]

    Read more

Of Interest

See archived entries

Deliveries

Last cryogenic tanks from Europe

Eleven storage tanks have been delivered by the European Domestic Agency in the past year for the ITER cryoplant, including two this past week.

The European-procured tanks are all stored horizontally on the ITER platform for the moment. However as seen in the image below, many of them will move to a vertical position when installed in their final location. (Click to view larger version...)
The European-procured tanks are all stored horizontally on the ITER platform for the moment. However as seen in the image below, many of them will move to a vertical position when installed in their final location.
The fabrication of the tanks for the ITER cryoplant was undertaken by European contractor Air Liquide and its subcontractors in such faraway locations as Sweden, the Czech Republic, China and Turkey, while logistics were handled by ITER's global logistics provider, DAHER.

One of the most technically challenging tanks will be capable of storing up to 20 tonnes of liquid helium (LHe), or 85 percent of the 24 tonnes of liquid helium that will be circulating in the ITER installation during operation. The double-wall vessel measures 25 metres in length.

The ITER cryoplant, under construction now, comprises 5,400 m² of covered buildings plus a large exterior area for the storage of helium and nitrogen. (Click to view larger version...)
The ITER cryoplant, under construction now, comprises 5,400 m² of covered buildings plus a large exterior area for the storage of helium and nitrogen.
Ten other tanks—six gaseous helium (GHe) tanks, one liquid nitrogen tank (LN2), one gaseous nitrogen tank (GN2), and two quench tanks for the storage of helium expelled from the ITER magnets in the case of a quench—are also needed as part of the cryoplant infrastructure.

The ITER cryoplant will provide liquid helium and liquid nitrogen to major clients for cooling. Cooling fluids generated in the cryoplant will travel along process lines installed 13 metres above platform level on a bridge that runs to the Tokamak Building; from there, approximately five kilometres of cryolines will distribute gas and liquid helium to the different "users." The ITER magnets will consume 45 percent of cryogenic power followed by the thermal shield (40 percent) and the cryopumps (15 percent).

The tanks will be installed in a 2,600 m² exterior storage area near the cryoplant, where a concrete platform has been prepared.

Read the full report on the European Domestic Agency website.


return to the latest published articles