Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cryolines | Another day, another spool

    Having wedged his body and equipment into the cramped space between the ceiling and the massive pipe, a worker is busy welding two cryolines spools. A few metre [...]

    Read more

  • Image of the week | Bearings unveiled

    The construction teams are in the last stages of preparing the Tokamak pit for the first major operation of ITER machine assembly: the lowering of the cryostat [...]

    Read more

  • Technology | Perfecting tritium breeding for DEMO and beyond

    While ITER will never breed tritium for its own consumption, it will test breeding blanket concepts—the tools and techniques that designers of future DEMO react [...]

    Read more

  • Fusion world | Japan and Europe complete the assembly of JT-60SA

    The JT-60SA fusion experiment in Naka, Japan, is designed to explore advanced plasma physics in support of the operation of ITER and next-phase devices. After s [...]

    Read more

  • Manufacturing | Thermal shield milestone in Korea

    Six years after the start of fabrication, Korean contractor SFA has completed the last 40° sector of vacuum vessel thermal shield. The stainless steel panels, c [...]

    Read more

Of Interest

See archived entries

Elementary particles

And now quark fusion?

Fusion as we know it involves two nuclei of light atoms. Nature provides a dozen possible combinations for fusion, but in the present state of our technological capabilities only the fusion of deuterium (D) and tritium (T), two hydrogen isotopes, is accessible.

Researchers at Tel Aviv University and at the University of Chicago think that quark fusion could be technically feasible in a powerful particle accelerator such as CERN's Large Hadron Collider (LHC) (Click to view larger version...)
Researchers at Tel Aviv University and at the University of Chicago think that quark fusion could be technically feasible in a powerful particle accelerator such as CERN's Large Hadron Collider (LHC)
Recently, physicists at Tel Aviv University in Israel and at the University of Chicago in the US have found evidence suggesting that fusion could occur between quarks, an elementary particle that is a constituent of the nucleus. Quark fusion, they calculate, could generate approximately eight times more energy than the energy released during DT fusion.

How does one go about fusing quarks? Researchers Marek Karliner and Jonathan Rosner think it could be technically feasible in a powerful particle accelerator such as CERN's Large Hadron Collider (LHC). But they warn that their work is still purely theoretical — just like the fusion of nuclei was not so long ago in the 1920s.

More information here and here.




return to the latest published articles