Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Image of the week | More cladding and a new message

    As the October sun sets on the ITER worksite, the cladding of the neutral beam power buildings takes on a golden hue. One after the other, each of the scientifi [...]

    Read more

  • Cryodistribution | Cold boxes 20 years in the making

    Twenty years—that is how long it took to design, manufacture and deliver the cold valve boxes that regulate the flow of cryogens to the tokamak's vacuum system. [...]

    Read more

  • Open Doors Day | Face to face with ITER immensity

    In October 2011, when ITER organized its first 'Open Doors Day,' there was little to show and much to leave to the public's imagination: the Poloidal Field [...]

    Read more

  • Fusion | Turning neutrons into electricity

    How will the power generated by nuclear fusion reactions be converted into electricity? That is not a question that ITER has been designed to answer explicitly, [...]

    Read more

  • Fusion world | JET completes a storied 40-year run

    In its final deuterium-tritium experimental campaign, Europe's JET tokamak device demonstrated plasma scenarios that are expected on ITER and future fusion powe [...]

    Read more

Of Interest

See archived entries

Elementary particles

And now quark fusion?

Fusion as we know it involves two nuclei of light atoms. Nature provides a dozen possible combinations for fusion, but in the present state of our technological capabilities only the fusion of deuterium (D) and tritium (T), two hydrogen isotopes, is accessible.

Researchers at Tel Aviv University and at the University of Chicago think that quark fusion could be technically feasible in a powerful particle accelerator such as CERN's Large Hadron Collider (LHC) (Click to view larger version...)
Researchers at Tel Aviv University and at the University of Chicago think that quark fusion could be technically feasible in a powerful particle accelerator such as CERN's Large Hadron Collider (LHC)
Recently, physicists at Tel Aviv University in Israel and at the University of Chicago in the US have found evidence suggesting that fusion could occur between quarks, an elementary particle that is a constituent of the nucleus. Quark fusion, they calculate, could generate approximately eight times more energy than the energy released during DT fusion.

How does one go about fusing quarks? Researchers Marek Karliner and Jonathan Rosner think it could be technically feasible in a powerful particle accelerator such as CERN's Large Hadron Collider (LHC). But they warn that their work is still purely theoretical — just like the fusion of nuclei was not so long ago in the 1920s.

More information here and here.




return to the latest published articles