Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Neutral beam injection | How ELISE is contributing to ITER

    ITER's neutral beam injection system is based on a radio frequency source that has been the subject of decades of development in Europe. At Max Planck Institute [...]

    Read more

  • Image of the week | Almost there

    The Tokamak Building has reached its maximum height ... in terms of concrete that is. The 'jewel box' in reinforced concrete will grow no more; instead, it will [...]

    Read more

  • Powerful lasers | A mockup to demonstrate safety

    During ITER operation, high-powered lasers will gather important diagnostic information on the properties and behaviour of the plasma, such as density, temperat [...]

    Read more

  • Cryostat | Lower cylinder revealed

    They were all there: those who designed it, those who forged it, those who assembled and welded it, and those who closely monitored the requirements and procedu [...]

    Read more

  • Europe's DEMO | What it could be like

    It looks like ITER, feels like ITER, but it's not ITER. In this depiction of what the site layout for the next-step fusion machine, DEMO, might look like in Eur [...]

    Read more

Of Interest

See archived entries

Elementary particles

And now quark fusion?

Fusion as we know it involves two nuclei of light atoms. Nature provides a dozen possible combinations for fusion, but in the present state of our technological capabilities only the fusion of deuterium (D) and tritium (T), two hydrogen isotopes, is accessible.

Researchers at Tel Aviv University and at the University of Chicago think that quark fusion could be technically feasible in a powerful particle accelerator such as CERN's Large Hadron Collider (LHC) (Click to view larger version...)
Researchers at Tel Aviv University and at the University of Chicago think that quark fusion could be technically feasible in a powerful particle accelerator such as CERN's Large Hadron Collider (LHC)
Recently, physicists at Tel Aviv University in Israel and at the University of Chicago in the US have found evidence suggesting that fusion could occur between quarks, an elementary particle that is a constituent of the nucleus. Quark fusion, they calculate, could generate approximately eight times more energy than the energy released during DT fusion.

How does one go about fusing quarks? Researchers Marek Karliner and Jonathan Rosner think it could be technically feasible in a powerful particle accelerator such as CERN's Large Hadron Collider (LHC). But they warn that their work is still purely theoretical — just like the fusion of nuclei was not so long ago in the 1920s.

More information here and here.




return to the latest published articles