Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Fuelling fusion | The magic cocktail of deuterium and tritium

    Nuclear fusion in stars is easy: it just happens, because the immense gravity of a star easily overcomes the resistance of nuclei to come together and fuse. [...]

    Read more

  • 360° image of the week | The cryoplant

    Cryogenics play a central role in the ITER Tokamak: the machine's superconducting magnets (10,000 tonnes in total), the vacuum pumps, thermal shields and so [...]

    Read more

  • Central solenoid assembly | First sequences underway

    What does it take to assemble the magnet at the heart of ITER? Heavy lifting, unerring accuracy, and a human touch. The central solenoid will be assembled from [...]

    Read more

  • Assembly | The eyes of ITER

    Supervisors ensure compliance and completion as machine and plant assembly forges ahead. In Greek mythology, Argus was considered an ideal guardian because his [...]

    Read more

  • Component repairs | Removing, displacing and disassembling

    A good repair job starts with a cleared workbench, the right tools on hand and a strong vise. This axiom, true for odd jobs in a home workshop, is also true for [...]

    Read more

Of Interest

See archived entries

Europe

3D printing for small-size components

The European Domestic Agency is investigating the benefits of 3D printing for the fabrication of smaller size (up to metre-scale) metal components. The technique seems particularly well adapted to unconventionally shaped objects or those with complex interior geometry.

The European Domestic Agency's Stefan Wikman shows the result of his work with a Swedish consortium to examine the feasibility of 3D printing techniques to manufacture ITER components. (Click to view larger version...)
The European Domestic Agency's Stefan Wikman shows the result of his work with a Swedish consortium to examine the feasibility of 3D printing techniques to manufacture ITER components.
The new method, known as additive manufacturing, uses computer-aided design (CAD) drawings as a starting point to directly manufacture 3D objects in a more efficient and cost-effective approach that avoids the mockups and prototypes of traditional manufacturing. The 3D printing equipment is able to read CAD data and lay down successive layers of liquid, melted powder or sheet material to form the component—a process that may be particularly well suited to some of the highly complex components required for ITER.

Together with a Swedish consortium, the European Domestic Agency is studying the feasibility of different 3D printing techniques for the manufacturing of the first wall beam--a metal beam that will fix plasma-facing panels to each ITER blanket module. The component, made of ITER-grade stainless steel, has a very complex internal structure to accommodate the passage of cooling water pipes.

The first feasibility studies have shown that the first wall beam components produced this way meet ITER specifications for physical properties and mechanical stress tolerances. The next step is to apply this method to the fabrication of larger components.

The 3D printing techniques for stainless steel components developed as part of Europe's research and development for ITER open up spin-off opportunities for the manufacturing of complex unconventionally shaped components in other fields. Potential areas for application of the 3D manufacturing technology include power plants and car engines.

Read the full article on the European Domestic Agency website here.


return to the latest published articles